AIML

Article Details

Vol. 1 No. 1 (2025): December

Traffic density prediction using the YOLO algorithm to improve traffic management in Bandar Lampung City

https://doi.org/10.35912/aiml.v1i1.3774
23 Dec 2025

Abstract

Purpose: This study aims to develop a traffic density prediction system in Bandar Lampung City to address increasing congestion caused by the rapid growth of vehicles that exceeds road capacity. The system is intended to support real-time monitoring, improve traffic management efficiency, and facilitate data-driven decision-making for adaptive traffic light control and route diversion.

Research Methodology: The study employed an experimental approach combined with prototyping. Vehicle detection was performed using the YOLO algorithm on CCTV footage collected from congestion-prone areas. The resulting data were processed and visualized through a web-based dashboard. System performance was evaluated based on vehicle detection accuracy and real-time processing speed under various traffic conditions.

Results: The developed system successfully detected vehicles from CCTV footage in real-time and displayed traffic density information through an interactive web dashboard. The system enabled adaptive traffic management by providing authorities with accurate and timely data on congestion patterns.

Conclusions: The study demonstrates that integrating YOLO-based vehicle detection with a web-based dashboard improves traffic management efficiency in Bandar Lampung City. Real-time monitoring and data visualization enhance the ability of authorities to make informed, timely decisions, contributing to more effective traffic control.

Limitations: The study is limited by the use of CCTV footage from selected congestion-prone areas, a relatively small dataset, and potential variability in detection accuracy under extreme weather or low-light conditions.

Contribution: This research provides a practical model for real-time traffic monitoring and management using YOLO and web-based visualization. The system offers a replicable framework for other urban areas facing similar traffic congestion challenges and supports data-driven policymaking.

Keywords

Deep Learning Traffic Congestion Traffic Management Vehicle Detection YOLO

How to Cite

Purdadi, I. G., & Agus, I. (2025). Traffic density prediction using the YOLO algorithm to improve traffic management in Bandar Lampung City. Applied AI and Machine Learning Journal, 1(1), 41–49. https://doi.org/10.35912/aiml.v1i1.3774

References

  1. Ayodeji, O., Olusegun, A., Olu, A., Obafemi, J. R., Akinrolabu, O. D., & Rotiba, O. (2025). A Deep Learning-based Model for Traffic Signal Control using the YOLO Algorithm. International Journal of Computer Applications, 975, 8887. doi:10.5120/ijca2025924452
  2. Cahyani, P. A., Mardiana, M., Wintoro, P. B., & Muhammad, M. A. (2024). Sistem Perhitungan Kendaraan Menggunakan Algortima YOLOv5 dan DeepSORT. Jurnal Teknik Informatika dan Sistem Informasi, 10(1), 86–99. doi:https://doi.org/10.28932/jutisi.v10i1.7519
  3. Cahyono, A. P., & Budiyanto, U. (2020). Penghitungan Objek Berdasarkan Berdasarkan Jenis Kendaraan Bermotor pada CCTV Lalu Lintas Berbasis Pengolahan Citra Digital Menggunakan Metode Background Subtraction dan Blob Detection. JTIM: Jurnal Teknologi Informasi Dan Multimedia, 2(2), 92-99. doi:http://dx.doi.org/10.24014/jel.v11i1.8607
  4. Dewi, C., Chen, R.-C., Jiang, X., & Yu, H. (2022). Deep convolutional neural network for enhancing traffic sign recognition developed on Yolo V4. Multimedia Tools and Applications, 81(26), 37821-37845. doi:https://doi.org/10.1007/s11042-022-12962-5
  5. Huizen, R. R. (2024). Optimalisasi Rekayasa Lalu Lintas Melalui Teknologi Deteksi Objek. Jurnal Sistem dan Informatika (JSI), 18(2), 111-117. doi:https://doi.org/10.30864/jsi.v18i2.605
  6. Husnul, A. H., Nurhatisyah, N., & Friadi, J. (2023). Sistem Informasi Pariwisata Pantai Glory Melur Berbasis Web. Jurnal Ilmu Siber dan Teknologi Digital, 1(1), 53-64. doi:10.35912/jisted.v1i1.1799
  7. Karim, A. S., & Aâ, L. R. (2019). Sistem Informasi Lalu Lintas di Kota Bandar Lampung Berbasis CCTV. TEKNIKA, 13(1), 39-47. doi:https://doi.org/10.5281/zenodo.3461325
  8. Margareth, M., Franklin, P., & Warouw, F. (2015). Studi Kemacetan Lalu Lintas Di Pusat Kota Ratahan. Spasial, 2(2), 89-97. doi:https://doi.org/10.35793/sp.v2i2.9090
  9. Pasaribu, A. A. O., Awangga, A. S., Batubara, E. I., & Herlingga, Y. (2024). Efektivitas CCTV dan Teknologi Pengawasan Tidak Langsung Dalam Meningkatkan Keamanan Lalu Lintas. Journal of Informatic and Information Security, 5(2), 257-268. doi:https://doi.org/10.31599/qdsb4k02
  10. Putra, G. D. A., Rahmadi, A. A., & Armin, A. P. (2025). Rancang Bangun Sistem Informasi Manajemen Klinik Chania Care Center Berbasis Web Responsif. Jurnal Ilmu Siber dan Teknologi Digital, 3(2), 153-179. doi:10.35912/jisted.v3i2.5095
  11. Rigel, M., Betlen, A., & Simanjuntak, M. (2024). Kepastian Hukum Terhadap Keamanan Investasi Bagi Pelaku Bisnis Pelayaran di Perairan Indonesia. Syntax Idea, 6(10), 6572-6591. doi:https://doi.org/10.46799/syntax-idea.v6i10.10013
  12. Rizk, F. H., Arkhstan, S., Zaki, A. M., Kandel, M. A., & Towfek, S. (2023). Integrated CNN and waterwheel plant algorithm for enhanced global traffic detection. Journal of Artificial Intelligence and Metaheuristics, 6(2), 36-45. doi:https://doi.org/10.54216/JAIM.060204
  13. Sathyanarayanan, S., & Tantri, B. R. (2024). Confusion matrix-based performance evaluation metrics. African Journal of Biomedical Research, 27(4S), 4023-4031. doi:https://doi.org/10.53555/AJBR.v27i4S.4345
  14. Setiawan, J., Meutia, I. F., & Prihantika, I. (2023). Implementasi Kebijakan Electronic Traffic Law Enforcement (ETLE) Di Kota Bandar Lampung (Studi Kasus Pada Polresta Kota Bandar Lampung). Jurnal Administrativa, 5(1), 65-74. doi:https://doi.org/10.23960/administrativa.v5i1.135
  15. Sinlae, F., Irwanda, E., Maulana, Z., & Syahputra, V. E. (2024). Penggunaan Framework Laravel dalam Membangun Aplikasi Website Berbasis PHP. JSMD ; Jurnal Siber Multi Disiplin, 2(2), 119-132. doi:https://doi.org/10.38035/jsmd.v2i2.186
  16. Sonnleitner, E., Barth, O., Palmanshofer, A., & Kurz, M. (2020). Traffic measurement and congestion detection based on real-time highway video data. Applied Sciences, 10(18), 6270. doi:https://doi.org/10.3390/app10186270
  17. Sunarso, S., Chairani, C., Triloka, J., & Kurniawan, R. (2025). Perbandingan Algoritma SVM dan CNN menggunakan PCA untuk Klasifikasi Kematangan Jeruk Keprok. Jurnal Ilmu Siber dan Teknologi Digital, 3(2), 203-221. doi:10.35912/jisted.v3i2.5034
  18. Surya, A., & Wahyuni, I. (2025). Deteksi Kepadatan Lalu Lintas Pada CCTV Publik Pemerintah Kota Malang Menggunakan YOLOv8. SPECTA Journal of Technology, 9(2), 136-149. doi:https://doi.org/10.35718/specta.v9i2.8481367
  19. Tanjung, Y. F., Nasir, M., & Bahreisy, B. (2025). Efektivitas Pemberlakuan Electronic Traffic Law Enforcement (Etle) terhadap Pelanggar Lalu Lintas. Jurnal Ilmiah Mahasiswa Fakultas Hukum Universitas Malikussaleh, 8(1), 19334. doi:https://doi.org/10.29103/jimfh.v8i1.19334
Contact Us
WhatsApp Instagram Facebook LinkedIn Email