AIML

Article Details

Vol. 1 No. 1 (2025): December

Blibiometric analysis of detection lung cancer

https://doi.org/10.35912/aiml.v1i1.3776
25 Dec 2025

Abstract

Purpose: This study aims to analyze global research trends in lung cancer detection using a bibliometric approach. It focuses on identifying publication growth, dominant research themes, citation patterns, and collaboration networks to better understand the direction and innovation of lung cancer detection research.

Methods: A bibliometric analysis was conducted using publication records retrieved from the Scopus database covering the period from 2019 to 2024. Key indicators such as publication output, citation counts, keyword co-occurrence, and author collaboration networks were analyzed.

Results: The results indicate a steady increase in publications related to lung cancer detection over the analyzed period. Major research themes include circulating tumor DNA, early detection strategies, next-generation sequencing, and liquid biopsy technologies. The analysis also reveals strong international collaboration networks, highlighting the global nature of lung cancer research and the collective effort to improve detection technologies.

Conclusion: The study concludes that research on lung cancer detection is rapidly expanding, driven by technological advancements and growing interest in non-invasive diagnostic approaches. Emerging technologies are expected to play a critical role in enhancing early diagnosis and reducing lung cancer mortality rates.

Limitation: This study is limited by its reliance on a single database (Scopus) and a relatively short time frame, which may not capture all relevant publications or long-term research trends.

Contribution: This research provides a comprehensive baseline reference for scholars and practitioners, offering valuable insights into current research directions and supporting future advancements in early lung cancer detection methods.

Keywords

Bibliometric Analysis Circulating Tumor DNA Early Detection Lung Cancer Research Trends

How to Cite

Ahludzikri, F., Hasibuan, M., Aziz, R. A., & Triloka, J. (2025). Blibiometric analysis of detection lung cancer. Applied AI and Machine Learning Journal, 1(1), 61–71. https://doi.org/10.35912/aiml.v1i1.3776

References

  1. Akhtar, N., & Bansal, J. G. (2017). Risk factors of Lung Cancer in nonsmoker. Current problems in cancer, 41(5), 328-339. doi:https://doi.org/10.1016/j.currproblcancer.2017.07.002
  2. Davies, K. D., Lomboy, A., Lawrence, C. A., Yourshaw, M., Bocsi, G. T., Camidge, D. R., & Aisner, D. L. (2019). DNA-based Versus RNA-based Detection of MET Exon 14 Skipping Events in Lung Cancer. Journal of Thoracic Oncology, 14(4), 737-741. doi:https://doi.org/10.1016/j.jtho.2018.12.020
  3. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296. doi:https://doi.org/10.1016/j.jbusres.2021.04.070
  4. Gan, Y.-n., Li, D.-d., Robinson, N., & Liu, J.-p. (2022). Practical guidance on bibliometric analysis and mapping knowledge domains methodology–A summary. European Journal of Integrative Medicine, 56, 102203. doi:https://doi.org/10.1016/j.eujim.2022.102203
  5. Garza-Reyes, J. A. (2015). Lean and green–a systematic review of the state of the art literature. Journal of cleaner production, 102, 18-29. doi:https://doi.org/10.1016/j.jclepro.2015.04.064
  6. Guan, J., Yan, Y., & Zhang, J. J. (2017). The impact of collaboration and knowledge networks on citations. Journal of Informetrics, 11(2), 407-422. doi:https://doi.org/10.1016/j.joi.2017.02.007
  7. Guo, Z., Huang, L., & Lai, S. (2024). Global knowledge mapping and emerging research trends in the microbiome and asthma: A bibliometric and visualized analysis using VOSviewer and CiteSpace. Heliyon, 10(2). doi:https://doi.org/10.1016/j.heliyon.2024.e24528
  8. Hudha, M. N., Hamidah, I., Permanasari, A., Abdullah, A. G., Rachman, I., & Matsumoto, T. (2020). Low Carbon Education: A Review and Bibliometric Analysis. European Journal of Educational Research, 9(1), 319-329.
  9. Jing, Y., Wang, C., Chen, Y., Wang, H., Yu, T., & Shadiev, R. (2024). Bibliometric mapping techniques in educational technology research: A systematic literature review. Education and Information Technologies, 29(8), 9283-9311. doi:https://doi.org/10.1007/s10639-023-12178-6
  10. Liu, B., Filho, J. R., Mallisetty, A., Villani, C., Kottorou, A., Rodgers, K., . . . Hulbert, A. (2020). Detection of Promoter DNA Methylation in Urine and Plasma Aids the Detection of Non–Small Cell Lung Cancer (pp. 4339-4348). doi:https://doi.org/10.1158/1078-0432.CCR-19-2896
  11. Ma, C., Yang, X., Xing, W., Yu, H., Si, T., & Guo, Z. (2020). Detection of circulating tumor DNA from non-small cell lung cancer brain metastasis in cerebrospinal fluid samples. Thoracic Cancer, 11(3), 588-593. doi:https://doi.org/10.1111/1759-7714.13300
  12. Mathios, D., Johansen, J. S., Cristiano, S., & Medina, J. E. (2021). Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nature communications, 12. doi:https://doi.org/10.1038/s41467-021-24994-w
  13. Mathios, D., Johansen, J. S., Cristiano, S., Medina, J. E., Phallen, J., Larsen, K. R., . . . Velculescu, V. E. (2021). Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nature Communications, 12(1). doi: https://doi.org/10.1038/s41467-021-24994-w
  14. Molla, G., & Bitew, M. (2025). The future of cancer diagnosis and treatment: Unlocking the power of biomarkers and personalized molecular-targeted therapies. Journal of Molecular Pathology, 6(3), 20. doi:https://doi.org/10.3390/jmp6030020
  15. Mu, F., Tang, M., Guan, Y., Lin, R., Zhao, M., Zhao, J., . . . Tang, H. (2022). Knowledge mapping of the links between the gut microbiota and heart failure: a scientometric investigation (2006–2021). Frontiers in Cardiovascular Medicine, 9, 882660. doi:https://doi.org/10.3389/fcvm.2022.882660
  16. Okubo, Y. (1997). Bibliometric indicators and analysis of research systems: methods and examples.
  17. Pakzad, R., Mohammadian-Hafshejani, A., Ghoncheh, M., Pakzad, I., & Salehiniya, H. (2015). The incidence and mortality of lung cancer and their relationship to development in Asia. Translational Lung Cancer Research, 4(6), 763. doi:https://doi.org/10.3978/j.issn.2218-6751.2015.12.01
  18. Peng, H., Lu, L., Zhou, Z., Liu, J., Zhang, D., Nan, K., & Zhao, X. (2019). CNV detection from circulating tumor DNA in late stage non-small cell lung cancer patients. Genes. doi:https://doi.org/10.3390/genes10110926
  19. Pruis, M. A., Geurts-Giele, W. R. R., & Meijssen, I. C. (2020). Highly accurate DNA-based detection and treatment results of MET exon 14 skipping mutations in lung cancer. Lung Cancer. doi:https://doi.org/10.1016/j.lungcan.2019.11.010
  20. Setyaningsih, I., Indarti, N., & Jie, F. (2018). Bibliometric analysis of the term'green manufacturing'. International Journal of Management Concepts and Philosophy, 11(3), 315-339. doi:https://doi.org/10.1504/IJMCP.2018.093500
  21. Smolle, E., Taucher, V., Lindenmann, J., Pichler, M., & Smolle-Juettner, F.-M. (2021). Liquid biopsy in non-small cell lung cancer—current status and future outlook—a narrative review. Translational Lung Cancer Research, 10(5), 2237. doi:https://doi.org/10.21037/tlcr-21-3
  22. Torre, L. A., Siegel, R. L., & Jemal, A. (2016). Lung cancer statistics. Lung cancer and personalized medicine: current knowledge and therapies, 1-19. doi:https://doi.org/10.1007/978-3-319-24223-1_1
  23. Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence?informed management knowledge by means of systematic review. British journal of management, 14(3), 207-222. doi:https://doi.org/10.1111/1467-8551.00375
  24. Wang, B., Pei, J., Wang, S., Cheng, K., Yu, J., & Liu, J. (2022). Prognostic potential of circulating tumor DNA detection at different time periods in resectable non-small cell lung cancer: Evidence from a meta-analysis. Critical Reviews in Oncology/Hematology, 177. doi:https://doi.org/10.1016/j.critrevonc.2022.103771
  25. Wang, S., Meng, F., Li, M., Bao, H., Chen, X., Zhu, M., . . . Yin, R. (2023). Multidimensional Cell-Free DNA Fragmentomic Assay for Detection of Early-Stage Lung Cancer (pp. 1203-1213). doi:https://doi.org/10.1164/rccm.202109-2019OC
  26. Wang, X., Guo, J., Gu, D., Yang, Y., Yang, X., & Zhu, K. (2019). Tracking knowledge evolution, hotspots and future directions of emerging technologies in cancers research: a bibliometrics review. Journal of Cancer, 10(12), 2643. doi:https://doi.org/10.7150/jca.32739
  27. Wei, B., Wu, F., Xing, W., Sun, H., Yan, C., Zhao, C., . . . Ma, J. (2021). A panel of DNA methylation biomarkers for detection and improving diagnostic efficiency of lung cancer. doi:https://doi.org/10.1038/s41598-021-96242-6
  28. Yang, Z., Qi, W., Sun, L., & Zhou, H. (2019). DNA methylation analysis of selected genes for the detection of early-stage lung cancer using circulating cell-free DNA. Advances in Clinical and Experimental Medicine. doi:https://doi.org/10.17219/acem/84935
  29. Zhang, J., Dong, Y., Zhu, W., Xie, D., Zhao, Y., Yang, D., & Li, M. (2019). Ultrasensitive Detection of Circulating Tumor DNA of Lung Cancer via an Enzymatically Amplified SERS-Based Frequency Shift Assay. ACS Applied Materials and Interfaces, 11(20), 18145-18152. doi:https://doi.org/10.1021/acsami.9b02953
Contact Us
WhatsApp Instagram Facebook LinkedIn Email