Article Details
Vol. 1 No. 1 (2025): December
Blibiometric analysis of detection lung cancer
Abstract
Purpose: This study aims to analyze global research trends in lung cancer detection using a bibliometric approach. It focuses on identifying publication growth, dominant research themes, citation patterns, and collaboration networks to better understand the direction and innovation of lung cancer detection research.
Methods: A bibliometric analysis was conducted using publication records retrieved from the Scopus database covering the period from 2019 to 2024. Key indicators such as publication output, citation counts, keyword co-occurrence, and author collaboration networks were analyzed.
Results: The results indicate a steady increase in publications related to lung cancer detection over the analyzed period. Major research themes include circulating tumor DNA, early detection strategies, next-generation sequencing, and liquid biopsy technologies. The analysis also reveals strong international collaboration networks, highlighting the global nature of lung cancer research and the collective effort to improve detection technologies.
Conclusion: The study concludes that research on lung cancer detection is rapidly expanding, driven by technological advancements and growing interest in non-invasive diagnostic approaches. Emerging technologies are expected to play a critical role in enhancing early diagnosis and reducing lung cancer mortality rates.
Limitation: This study is limited by its reliance on a single database (Scopus) and a relatively short time frame, which may not capture all relevant publications or long-term research trends.
Contribution: This research provides a comprehensive baseline reference for scholars and practitioners, offering valuable insights into current research directions and supporting future advancements in early lung cancer detection methods.
Keywords
How to Cite
Download Citation
References
- Akhtar, N., & Bansal, J. G. (2017). Risk factors of Lung Cancer in nonsmoker. Current problems in cancer, 41(5), 328-339. doi:https://doi.org/10.1016/j.currproblcancer.2017.07.002
- Davies, K. D., Lomboy, A., Lawrence, C. A., Yourshaw, M., Bocsi, G. T., Camidge, D. R., & Aisner, D. L. (2019). DNA-based Versus RNA-based Detection of MET Exon 14 Skipping Events in Lung Cancer. Journal of Thoracic Oncology, 14(4), 737-741. doi:https://doi.org/10.1016/j.jtho.2018.12.020
- Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296. doi:https://doi.org/10.1016/j.jbusres.2021.04.070
- Gan, Y.-n., Li, D.-d., Robinson, N., & Liu, J.-p. (2022). Practical guidance on bibliometric analysis and mapping knowledge domains methodology–A summary. European Journal of Integrative Medicine, 56, 102203. doi:https://doi.org/10.1016/j.eujim.2022.102203
- Garza-Reyes, J. A. (2015). Lean and green–a systematic review of the state of the art literature. Journal of cleaner production, 102, 18-29. doi:https://doi.org/10.1016/j.jclepro.2015.04.064
- Guan, J., Yan, Y., & Zhang, J. J. (2017). The impact of collaboration and knowledge networks on citations. Journal of Informetrics, 11(2), 407-422. doi:https://doi.org/10.1016/j.joi.2017.02.007
- Guo, Z., Huang, L., & Lai, S. (2024). Global knowledge mapping and emerging research trends in the microbiome and asthma: A bibliometric and visualized analysis using VOSviewer and CiteSpace. Heliyon, 10(2). doi:https://doi.org/10.1016/j.heliyon.2024.e24528
- Hudha, M. N., Hamidah, I., Permanasari, A., Abdullah, A. G., Rachman, I., & Matsumoto, T. (2020). Low Carbon Education: A Review and Bibliometric Analysis. European Journal of Educational Research, 9(1), 319-329.
- Jing, Y., Wang, C., Chen, Y., Wang, H., Yu, T., & Shadiev, R. (2024). Bibliometric mapping techniques in educational technology research: A systematic literature review. Education and Information Technologies, 29(8), 9283-9311. doi:https://doi.org/10.1007/s10639-023-12178-6
- Liu, B., Filho, J. R., Mallisetty, A., Villani, C., Kottorou, A., Rodgers, K., . . . Hulbert, A. (2020). Detection of Promoter DNA Methylation in Urine and Plasma Aids the Detection of Non–Small Cell Lung Cancer (pp. 4339-4348). doi:https://doi.org/10.1158/1078-0432.CCR-19-2896
- Ma, C., Yang, X., Xing, W., Yu, H., Si, T., & Guo, Z. (2020). Detection of circulating tumor DNA from non-small cell lung cancer brain metastasis in cerebrospinal fluid samples. Thoracic Cancer, 11(3), 588-593. doi:https://doi.org/10.1111/1759-7714.13300
- Mathios, D., Johansen, J. S., Cristiano, S., & Medina, J. E. (2021). Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nature communications, 12. doi:https://doi.org/10.1038/s41467-021-24994-w
- Mathios, D., Johansen, J. S., Cristiano, S., Medina, J. E., Phallen, J., Larsen, K. R., . . . Velculescu, V. E. (2021). Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nature Communications, 12(1). doi: https://doi.org/10.1038/s41467-021-24994-w
- Molla, G., & Bitew, M. (2025). The future of cancer diagnosis and treatment: Unlocking the power of biomarkers and personalized molecular-targeted therapies. Journal of Molecular Pathology, 6(3), 20. doi:https://doi.org/10.3390/jmp6030020
- Mu, F., Tang, M., Guan, Y., Lin, R., Zhao, M., Zhao, J., . . . Tang, H. (2022). Knowledge mapping of the links between the gut microbiota and heart failure: a scientometric investigation (2006–2021). Frontiers in Cardiovascular Medicine, 9, 882660. doi:https://doi.org/10.3389/fcvm.2022.882660
- Okubo, Y. (1997). Bibliometric indicators and analysis of research systems: methods and examples.
- Pakzad, R., Mohammadian-Hafshejani, A., Ghoncheh, M., Pakzad, I., & Salehiniya, H. (2015). The incidence and mortality of lung cancer and their relationship to development in Asia. Translational Lung Cancer Research, 4(6), 763. doi:https://doi.org/10.3978/j.issn.2218-6751.2015.12.01
- Peng, H., Lu, L., Zhou, Z., Liu, J., Zhang, D., Nan, K., & Zhao, X. (2019). CNV detection from circulating tumor DNA in late stage non-small cell lung cancer patients. Genes. doi:https://doi.org/10.3390/genes10110926
- Pruis, M. A., Geurts-Giele, W. R. R., & Meijssen, I. C. (2020). Highly accurate DNA-based detection and treatment results of MET exon 14 skipping mutations in lung cancer. Lung Cancer. doi:https://doi.org/10.1016/j.lungcan.2019.11.010
- Setyaningsih, I., Indarti, N., & Jie, F. (2018). Bibliometric analysis of the term'green manufacturing'. International Journal of Management Concepts and Philosophy, 11(3), 315-339. doi:https://doi.org/10.1504/IJMCP.2018.093500
- Smolle, E., Taucher, V., Lindenmann, J., Pichler, M., & Smolle-Juettner, F.-M. (2021). Liquid biopsy in non-small cell lung cancer—current status and future outlook—a narrative review. Translational Lung Cancer Research, 10(5), 2237. doi:https://doi.org/10.21037/tlcr-21-3
- Torre, L. A., Siegel, R. L., & Jemal, A. (2016). Lung cancer statistics. Lung cancer and personalized medicine: current knowledge and therapies, 1-19. doi:https://doi.org/10.1007/978-3-319-24223-1_1
- Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence?informed management knowledge by means of systematic review. British journal of management, 14(3), 207-222. doi:https://doi.org/10.1111/1467-8551.00375
- Wang, B., Pei, J., Wang, S., Cheng, K., Yu, J., & Liu, J. (2022). Prognostic potential of circulating tumor DNA detection at different time periods in resectable non-small cell lung cancer: Evidence from a meta-analysis. Critical Reviews in Oncology/Hematology, 177. doi:https://doi.org/10.1016/j.critrevonc.2022.103771
- Wang, S., Meng, F., Li, M., Bao, H., Chen, X., Zhu, M., . . . Yin, R. (2023). Multidimensional Cell-Free DNA Fragmentomic Assay for Detection of Early-Stage Lung Cancer (pp. 1203-1213). doi:https://doi.org/10.1164/rccm.202109-2019OC
- Wang, X., Guo, J., Gu, D., Yang, Y., Yang, X., & Zhu, K. (2019). Tracking knowledge evolution, hotspots and future directions of emerging technologies in cancers research: a bibliometrics review. Journal of Cancer, 10(12), 2643. doi:https://doi.org/10.7150/jca.32739
- Wei, B., Wu, F., Xing, W., Sun, H., Yan, C., Zhao, C., . . . Ma, J. (2021). A panel of DNA methylation biomarkers for detection and improving diagnostic efficiency of lung cancer. doi:https://doi.org/10.1038/s41598-021-96242-6
- Yang, Z., Qi, W., Sun, L., & Zhou, H. (2019). DNA methylation analysis of selected genes for the detection of early-stage lung cancer using circulating cell-free DNA. Advances in Clinical and Experimental Medicine. doi:https://doi.org/10.17219/acem/84935
- Zhang, J., Dong, Y., Zhu, W., Xie, D., Zhao, Y., Yang, D., & Li, M. (2019). Ultrasensitive Detection of Circulating Tumor DNA of Lung Cancer via an Enzymatically Amplified SERS-Based Frequency Shift Assay. ACS Applied Materials and Interfaces, 11(20), 18145-18152. doi:https://doi.org/10.1021/acsami.9b02953
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.