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Abstract  

Purpose: This study presents a tri-objective model for the integrated 

planning of production and distribution within a multi-level supply 

chain network that encompasses multiple product types and time 

periods. 

Research methodology: The supply chain network includes 

manufacturer plants (MPs), distribution centers (DCs), retailers, and 

final customers. The proposed model aims to minimize total supply 

chain costs, ensure timely delivery of products to customers, and 

reduce the lost demand rate. Classified as a linear integer 

programming problem, which is NP-Hard, the model’s complexity is 

addressed using two multi-objective meta-heuristic approaches based 

on the Pareto method: the Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) and the Non-Dominated Ranking Genetic Algorithm 

(NRGA). The Taguchi method is employed to optimize the input 

parameters of these algorithms. 

Results: The performance of the proposed solution methods is 

evaluated through various test problems of different dimensions. 

Statistical analyses confirm the effectiveness and reliability of both 

algorithms in achieving the defined objectives. 

Conclusions: The findings highlight that multi-objective meta-

heuristic approaches, when parameter-tuned appropriately, provide 

efficient and practical solutions for integrated supply chain planning, 

offering a balance among cost, service level, and demand fulfillment. 

Limitations: The study acknowledges the inherent complexity of the 

problem and the dependency of meta-heuristic outputs on parameter 

settings, which may influence solution robustness. 

Contribution: This research contributes to the literature by providing 

a robust framework for optimizing production and distribution in 

complex supply chain networks, delivering insights into the 

application of advanced algorithmic strategies in operational 

planning. 
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1. Introduction 
In today's world, industrial development and economic changes are occurring at an ever-increasing rate 

compared to the past. Increasing customer expectations and expanding global competition force 

organizations to pay more attention to customer satisfaction and investigate their logistics systems 

(Querin & Göbl, 2017). Supply chain management (SCM) has become an area of increasing interest for 

https://doi.org/10.35912/amor.v7i1.2542
mailto:drstephenojo@fugashua.edu.ng1
mailto:mabbasi@mut.ac.ir2


2025 | Annals of Management and Organization Research / Vol 7 No 1, 45-65 

46 

academics, consultants, and business managers in recent years (Khedr 2024). Moreover, market 

globalization compels firms to make more coordinated and integrated decisions to provide goods and 

services to customers at lower costs and higher service levels (Thomas & Griffin, 1996). Decision-

making increasingly occurs at all levels of businesses, companies and organizations. There is a need to 

build a theory and develop normative tools and methods for successful SCM (Lee & Kim, 2002). Most 

of the proposed models in integrated SCM can be classified as follows: Integrated Buyer-Seller, 

Integrated Production-Distribution Planning, Integrated Production-Inventory Planning, and Location-

Allocation Models. In an efficiently designed production/distribution system, products are produced 

and distributed in the right quantities, to the right customers, and at the right time, thereby minimizing 

system-wide costs while satisfying all required demands. Production and distribution models are 

operationally connected and closely related to each other. These two linked problems are considered 

production-distribution models in the supply chain (SC). To find an optimal solution for this problem, 

we need to propose an integrated model and solution method that simultaneously consider production 

and distribution characteristics (Farahani, Babaei, & Esfahani, 2024). In this study, a model was 

developed to plan production and distribution in a multilevel supply chain. In the next section, the 

literature on modeling a multilevel supply chain is reviewed, and considering the findings, a multi-

objective model is developed to optimize the planning of production and distribution simultaneously in 

multiperiod and multiproduct situations. 

 

2. Literature review 

The modeling and analysis of production–distribution systems in SCM have been active areas of 

research for many years. Pasha, Kamalabadi, and Eydi (2021) and Joel, Oyewole, Odunaiya, and 

Soyombo (2024) provide excellent reviews of the SC literature. Bhattacharya, Govindan, Dastidar, and 

Sharma (2024) proposed multi heuristic algorithms to minimize production-distribution costs in the SC. 

Koutsokosta and Katsavounis (2024) presented a mixed integer production-distribution problem under 

stochastic demands and solved it using economic order quantity techniques. Bo et al. (2021) presented 

a production-distribution planning problem including a factory and multi warehouses. The proposed 

model minimizes the total transportation and inventory costs under production capacity and inventory 

balance constraints, respectively. Lee and Kim (2002) proposed an analytical technique to solve the 

integrated production-distribution planning in SCM. They developed a multi-plant, multi-product, and 

multi-period production-distribution problem by considering resource constraints. Tapia-Ubeda, 

Miranda-Gonzalez, and Gutiérrez-Jarpa (2024) designed a network including suppliers, manufacturers, 

distribution centers, and customers with mixed-integer programming according to material 

requirements. Biza, Montastruc, Negny, and Admassu (2024) presented a strategic planning problem 

for the three echelon supply chain network including suppliers, manufactures and distribution centers, 

in order to minimize production, distribution and transportation costs. Tsai, Tan, Truong, Tran, and Lin 

(2024) stated an optimization technique for the SC planning problem with uncertain demands by using 

valid and economic measures. They used a stochastic model for the SC problem to meet network 

demands on the expected delivery date. Goodarzian and Hosseini-Nasab (2021) proposed an optimal 

production allocation and distribution problem in the supply chain network as a mixed-integer linear 

programming (MILP) model. Their proposed objective was to determine the optimal configuration of a 

production-distribution network with operational and financial constraints. In this study, the operational 

constraints are quality, production, and supply constraints, which are related to the allocation of 

production and workload balance. Financial constraints include production costs, transportation costs, 

and duties for the material following within the network subject to exchange rates. 

 

Many studies have used fuzzy logic to assess supply chain problems (Aliev, Fazlollahi, Guirimov, & 

Aliev, 2007; Forozandeh, 2021; Mbamalu, Chike, Oguanobi, & Egbunike, 2023; Zahedi, Abbasi, & 

Khanachah, 2020). In recent research, Liang (2012) proposed a fuzzy multi-objective production-

distribution planning decision with a piecewise linear membership function in a multi-product and 

multi-period SC problem. The objective functions minimize the total costs and total delivery time of 

the network by considering inventory levels, labor levels at each source, available machine capacity, 

forecast demand, total budget, and available warehouse space at each destination. Razmi, Songhori, and 

Khakbaz (2009) presented an integrated framework consisting of two stages where suppliers and orders’ 

allocations. They suggested a fuzzy TOPSIS model to evaluate suppliers, and then considered an integer 
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programming model with fuzzy goals and constraints for the optimal allocation of order quantities 

assigned to the suppliers. Liang (2012) examined the application of fuzzy sets to 

manufacturing/distribution planning decisions in SCs. The objective function minimizes the total 

production costs, including regular and overtime production costs, inventory carrying cost, 

subcontracting cost, and backordering cost. In this study, a fuzzy mathematical programming 

methodology for solving MDPD integration problems in uncertain environments is considered.  

 

In the real world, because the size of the problem is large and the computational time for solving this 

class of problems is high, meta-heuristic algorithms are suggested for solving the problem. In this 

regard, Rajabi-Kafshgar, Gholian-Jouybari, Seyedi, and Hajiaghaei-Keshteli (2023) developed a hybrid 

genetic algorithm (HGA) for designing a supply chain network with multiple products in multiple time 

periods. The suggested model determines the integration of production, distribution, and inventory 

systems so that products are produced and distributed in appropriate quantities by minimizing the 

system costs while meeting all demands. (Vishnu, Das, Sridharan, Ram Kumar, & Narahari, 2021) 

proposed a genetic algorithm for solving integrated production-distribution planning problems in the 

supply chain network. The proposed model is presented in three echelons of suppliers, manufacturers, 

and distribution centers, and minimizes total costs, including ordering, procurement, inventory, 

production, and transportation costs. Kazemi, Fazel Zarandi, and Moattar Husseini (2009) presented 

two scenarios to solve the production-distribution planning problem (PDPP). In the first scenario, a 

centralized method was applied, and a genetic algorithm (GA) was presented to solve the PDPP. Here, 

the crossover is a single point in the plant. In the second scenario, an agent-based system is developed 

to solve the PDPP. In this case, three GAs were assumed to be the agents of the model. Billal and 

Hossain (2020) suggested a multi-objective linear programming problem consisting of a manufacturer 

with multiple plants, products, distribution centers, retailers, and customers to integrate a production–

distribution problem. They proposed three meta-heuristics: (1) a simple genetic algorithm, (2) a particle 

swarm optimization (PSO) algorithm with a new fitness function, and (3) an improved hybrid genetic 

algorithm. Hong, Diabat, Panicker, and Rajagopalan (2018) proposed a solution methodology using ant 

colony optimization (ACO) for a distribution-allocation problem. They used a two-stage supply chain 

with a fixed cost for the transportation route. S. Liu and Papageorgiou (2013) presented a production, 

distribution and capacity planning problem for the global SC. They considered three objectives: cost, 

responsiveness, and customer service level. In this model, the ε-constraint and lexicographic minimax 

methods are used as solution approaches to solve the multi-objective problem. 

 

In this study, an integrated procurement, production, and distribution planning problem model for 

designing f four-level SC with multiple product types and multiple time periods is suggested to 

minimize the total supply chain costs, the due date of the products to the customers, and the last demand 

rate of customers. To solve the problem, two tuned multi-objective meta-heuristic algorithms, NSGA-

II and NRGA based on the Pareto method, are proposed. The Taguchi method was used to tune the 

algorithm parameters. The remainder of this paper is organized as follows: the problem definition and 

detailed mathematical formulation are presented in Section 2. The proposed solution method is 

discussed in Section 3. In Section 4, the obtained optimization results are analyzed. Finally, the 

conclusions and suggestions for future research are presented in Section 5. 

 

3. Research methodology 
3.1 Problem Definition 

A supply chain consisting of multiple manufacturers (MPs), distribution centers (DCs), retailers, and 

customers is considered in this study. In the studied supply chain, products produced by each 

manufacturer are shipped to distribution centers. Here, a distributor can be established as a logistics 

warehouse in potential centers to deliver products from manufacturers to retailers. Therefore, retailers 

at these potential centers supply products to customers during each period. 

 

Figure 1 illustrates the proposed supply chain network. Three key factors are required in this supply 

chain: reduced costs, improved responsiveness, and increased service levels for customers. In the 

proposed research, reduced costs are achieved by minimizing the total costs of the supply chain, 
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improved responsiveness is attained by minimizing the due dates of products to customers, and 

increased service levels are accomplished by minimizing the lost demand rate of products. The proposed 

Supply Chain Network Design (SCND) problem is formulated as a multi-objective mixed-integer linear 

programming (MILP) model. In this model, one of the objectives is a function of time, whereas the 

other two objectives conflict with each other. In other words, on one hand, retailers aim to maximize 

service levels for customers; on the other hand, maximizing service levels may lead to an increase in 

the total cost of the supply chain 

 

Figure 1. Proposed supply chain network 

 

In the following subsections, the assumptions and nominations are presented. The indices, parameters, 

decision variables, objective function, and constraints are then introduced. 

 

3.2 Assumptions and nominations 

The assumptions and nominations for formulating the problem are as follows: 

• We have P MPs, D DCs, R retailers, and C customers. 

• Each MP can produce various products and can manufacture all the ordered products within each 

period. 

• The production capacity for MPs was considered. 

• The holding capacity of products for DCs and retailers in each period is considered. 

• The location of MPs is fixed, and the potential centers for DCs and retailers are known. 

• The minimum fill rate must be maintained. 

 

3.2.1 Indices and parameters 

m: index of MPs (m=1, 2, …, M) 

d: index of DCs (d=1, 2, …, D) 

r: index of retailers (r=1, 2, …, R) 

c: index of customers (c=1, 2, …, C) 

p: index of products (p=1, 2, …, P) 

t: index of periods (t=1, 2, …, T) 

Cd: Fixed cost of establishing the DC d 

Cr: Fixed cost of establishing the retailer r 

Dcpt: Demand of product p by customer c in period t 

Cmdpt: Unit cost of making and transportation of product p to DC d by MP m in period t 

Cdrpt: Unit cost of transportation of product p to retailer r by DC d in period t 

Crcpt: Unit cost of transportation of product p to customer c by retailer r in period t 

Hdpt: Holding cost of product p for DC d in period t 
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Hrpt: Holding cost of product p for retailer r in period t 

UCMmpt: Upper capacity of MP m for product p in period t 

LCMmpt: Lower capacity of MP m for product p in period t 

CDdpt: Capacity of DC d for product p in period t 

CRrpt: Capacity of retailer r for product p in period t 

DUrct: Due date of products from retailer r to customer c in period t 

 

3.2.2 Decision Variables 

Qmdpt: Quantity of product p shipped from MP m to DC d in period t 

Qdrpt: Quantity of product p shipped from DC d to retailer r in period t 

Qrcpt: Quantity of product p shipped from retailer r to customer c in period t 

Idpt: Inventory of product p for DC d in period t 

Irpt: Inventory of product p for retailer r in period t 

Yd: 

1                  

0                                           

if DC d is to be established

otherwise



  

Yr: 

1                 

0                                                

if retailer r is to be established

otherwise



  

 

3.2.3 Formulated problem 

The first objective function of the proposed model is given by Eq. 1 minimizes the total costs of the 

supply chain (SC). This includes the sum of transportation costs between SC echelons, inventory costs 

of products for distribution centers (DCs), and retailers in each period, and the costs associated with 

establishing the DCs and retailers. The second objective function is given by Eq. 2 minimizes the due 

dates of products delivered to customers by retailers. The third objective function is given by Eq. 3 

minimizes the lost demand rate of products to customers.

1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

 Z ( . ) ( . ) ( . )

( . ) ( . ) ( . ) ( . )

M D P T D R P T R C P T
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m d p t d r p t r c p t
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dpt dpt rpt rpt d d r r

d p t r p t d r
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H I H I C Y C Y

= = = = = = = = = = = =

= = = = = = = =

= + +

+ + + +

  

                              (1) 

 

2

1 1 1 1

 Z ( . )
R C P T

rct rcpt

r c p t

Min DU Q
= = = =

=                                                                                                                       (2)       

1 1 1 1 1 1

3

1 1 1

 Z

C P T R C P T

cpt rcpt

c p t r c p t

C P T

cpt

c p t

D Q
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D

= = = = = = =

= = =

−

=

 


                                                                                              (3) 

S.t. 

1

             , ,
D

mpt mdpt mpt

d

LCM Q UCM m p t
=

                                                                                              (4)   

1

                , ,
M

mdpt dpt dpt

m

Q I CD d p t
=

+                                                                                                       (5)             

1

.                  , ,
R

drpt dpt d

r
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=

                                                                                                          
(6) 

1

                 , ,
D
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d

Q I CR r p t
=

+                                                                                                                   (7) 



2025 | Annals of Management and Organization Research / Vol 7 No 1, 45-65 

50 

1

.                  , ,
C

rcpt rpt r

c

Q CR Y r p t
=

                                                                                                                        (8)
 

1

1 1

             , ,
M R

dpt dpt mdpt drpt

m r

I I Q Q d p t−

= =

− = −  
                                                                                        

(9)   

1

1 1

             , ,
D C

rpt rpt drpt rcpt

d c

I I Q Q r p t−

= =

− = −  

1

             , ,
R

rcpt cpt

r

Q D c p t
=

                                                                                                                    (11)   

1 1 1 1

1 1 1
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,  ,  , ,  0        , , , , ,mdpt drpt rcpt dpt rptQ Q Q I I m d r c p t                                                                                    (13) 

 , 0,1         ,d rY Y d r                                                                                                                               (14) 

0 0, 0        , ,dp rpI I d r p=                                                                                                                                         (15) 

 

Constraint (4) indicates the lower and upper capacity of the MP that can be shipped to the DCs. Equation 

(5) states that the total quantity of each product shipped from the MPs to a DC plus the inventory of 

products in period t cannot exceed the DC’s capacity. Equation (6) specifies that the total quantity of 

each product shipped to retailers by each DC in period t is limited to its corresponding capacity if DC 

d is established. Constraint (7) indicates that the total quantity of each product shipped from DCs to 

retailer r plus the inventory of the product in period t is limited to the retailer’s capacity. Equation (8) 

shows that the total quantity of each product shipped from each retailer to customers in period t cannot 

exceed the retailer’s capacity if retailer r is established. Constraints (9) and (10) are the inventory 

balance equations for each product for DCs and retailers. For example, Equation (9) means that the 

inventory of product p for DC d in period t is equal to the inventory of product p in the previous period 

plus the quantity of product p shipped from MPs to DC d in period t minus the quantity of product p 

shipped from DC d to retailers in period t. Constraint (11) ensures that the quantity of a product shipped 

by retailer r to a customer in period t cannot exceed the customer demand if retailer r is assigned to the 

customer. Constraint (12) indicates that the fill rate can vary from 85% to 100%. Finally, Constraints 

(13) and (14) ensure the non-negativity and binary states of the variables. Note that the initial states of 

the inventories are shown in Equation (15). 

 

3.3 Solution methodology 

Multi-objective problems are concerned with mathematical optimization problems involving more than 

one objective function to be optimized simultaneously. Multi-objective optimization has been applied 

in many fields of science, including engineering, economics, and logistics, where optimal decisions 

must be made in the presence of trade-offs between two or more conflicting objectives. In a multi-

objective optimization problem, there is no single solution that simultaneously optimizes each objective. 

In this case, the objective functions are said to be conflicting, and there exists a possibility of an infinite 

number of optimal solutions. 

 

In this study, two multi-objective algorithms based on Pareto were suggested for solving the integrated 

production-distribution model. The proposed algorithms are called the non-dominated Sorting Genetic 

Algorithm (NSGA-II) and non-dominated Ranking Genetic Algorithm (NRGA).  

 

http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Trade-off
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3.3.1 Non-dominated Sorting Genetic Algorithm (NSGA-II) 

The Non-dominated Sorting Genetic Algorithm (NSGA-II) is one of the most successful and widely 

used multi-objective evolutionary algorithms introduced by Bouali, Abi, Benhala, and Guerbaoui 

(2025). 

 

In single-objective problems, finding the solution is based on an objective, whereas in multi-objective 

problems, there is no single solution that simultaneously optimizes each objective; thus, there will be a 

set of optimal solutions called non-dominated solutions. The set of all efficient points for a multiple-

objective optimization problem is known as the efficient frontier. A solution is called non-dominated, 

Pareto optimal, Pareto efficient, or no inferior, if none of the objective functions can be improved in 

value without degrading some of the other objective values. Without additional subjective preference 

information, all Pareto-optimal solutions are considered equally good. Pareto-based algorithms are a 

new generation of multi-objective algorithms that mostly work in accordance with the domination 

concept. In a multi-objective model with m minimization objective functions, that is, 

 

1) F(x) =[ f (x), ..., fm(x)] subject to gi(x) ≤ 0, i =1, 2, ..., m, in which xεX is a n-dimensional vector 

that can gets real, integer, or even Boolean value and X is the feasible region, domination concept 

is defined as follows 

 

 

1) ( ) ( ),      1, 2,...,

2) 1,2,..., :  ( ) ( )

a b

a b

f x f x i m

i m f x f x

 =

  

r r

r r

 
 

According to these conditions, solution ‘a’ dominates solution ‘b’ under the simultaneous existence of 

the two conditions mentioned above. Based on this definition, the Pareto optimal front is a set of 

solutions that cannot dominate each other. This front has two main features: 1) good convergence and 

2) good diversity within the solutions of the Pareto front. 

 

Note that the initial population size (nPop), crossover probability (Pc), and mutation probability (Pm) 

are required to start the NSGA-II. The parameter values were obtained using the Taguchi method. 

 

3.3.1.1 Chromosome representation 
The structure of the problem’s chromosomes includes three parts. The first part of the chromosome 

indicates decisions about establishing potential DCs and retailers. The second part of the chromosome 

is an array with dimensions of MPs, DCs, customers, products, and time periods. The array indicates 

the number of products shipped from MPs to DCs, from DCs to retailers, and from retailers to customers 

in each time period. The third part includes the amount of product inventory for DCs and retailers. An 

example of the aforementioned structure is shown in Fig.2.     

http://en.wikipedia.org/wiki/Pareto_optimal
http://en.wikipedia.org/wiki/Pareto_efficient
http://en.wikipedia.org/wiki/Subjectivity
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Figure 2. The proposed chromosome structure 

 

In the proposed solution method, the assignments are based on the problem constraints. For example, 

the product shipped from MP p to DC d is not greater than the production capacity of manufacturer p 

in period t. This assignment for each random manufacturer is repeated until the capacity constraints are 

satisfied.  

 

In the proposed algorithm, the penalty is defined as the positive coefficient. When a chromosome is 

feasible, the penalty value is selected as zero. Even if one of the constraints is not satisfied, it will be 

considered a nonzero value. According to the general form of constraints as ( )g x b , the penalty value 

of a chromosome is obtained as follow (Yeniay, 2005): 

 

( )
( ) 1 ,0

g x
P x M Max

b

  
=  −  

  
                                                                                                              (16) 

 

where P(x), M, and g(x) indicate the penalty value of chromosome x, a large number, and constraint, 

respectively. When a chromosome is feasible, the penalty value is zero; otherwise, the penalty value is 

multiplied by the function value. In addition, we consider the normalization policy within the penalty 

function framework to normalize all constraints. It should be noted that when the penalty is large, the 

coefficient is considered large, and the average of the violation is considered for each type of constraint.  

 

3.3.1.2 A fast non-dominated sorting approach 

To sort a population of size N according to the level of non-domination, each solution must be compared 

with every other solution in the population to determine whether it is dominated. 

 

This requires O (MN) comparisons for each solution, where M is the number of objectives. When this 

process is continued to find the members of the first non-dominated class for all population members, 

the total complexity is O (MN2). At this stage, all individuals in the first nondominated front are found. 

To find the individuals in the next front, the solutions of the first front are temporarily discounted, and 

the above procedure is repeated. In the worst case, the task of finding the second front also requires O 

(MN2) computations. The procedure is repeated to determine the subsequent fronts.  

 

To estimate the density of solutions surrounding a particular point in the population, we consider the 

average distance of the two points on either side of this point along each of the objectives. This quantity 
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i distance serves as an estimate of the size of the largest cuboid enclosing point i without including any 

other point in the population ( the crowding distance). In Figure 3, the crowding distance of the i-th 

solution in its front (marked with solid circles) is the average side length of the cuboid (shown with a 

dashed box).  

 

Between two solutions with differing crowding distances, we prefer the point with the lower density. 

Otherwise, if both points belong to the same front, we prefer the point located in a region with less 

crowding distance (Bouali et al., 2025). 

 

 
Figure 3. Crowding distance calculation (Bouali et al., 2025)   

 

3.3.1.3 Parent and selection strategy 

The crowded tournament selection operator is used for parent population selection by applying 

crossover and mutation. This operator compares two solutions and selects the better one (i). We assume 

that every individual i in the population has two attributes. 

1. Non-domination rank (ri) 

2. Local crowding distance (di) 

 

That is, between two solutions with differing non-domination ranks, we prefer the point with the lower 

rank. Otherwise, if both points belong to the same front, we prefer the point located in a region with a 

lesser number of points (Bouali et al., 2025) . 

 

3.3.1.4 Crossover structure 

During the iterations of the algorithm, a uniform crossover operator was implemented to produce new 

offspring. Generally, this method is used for situations in which the appropriate characteristics of genes 

are scattered throughout the chromosome (Bate & Jones, 2008). In this crossover operator, some genes 

are swapped within the chromosomes of the parents to produce offspring. Figure 4 illustrates a scheme 

of this operator.  

 

 
Figure 4. A sample of the uniform crossover operator for Quantity of product shipped from MP m to 

DC d 
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3.3.1.5 Mutation operation 

The movement from the present population to the new population causes an increase in population 

variation. This diversity is based on the evaluation and progress made in reaching the final solution.  

Thus, to prevent local optimum solutions, mutation is performed after a crossover is applied. To obtain 

a new offspring using mutation, at least one chromosome part is considered. Then, based on to the rate 

of mutation (Pm), the number  
m

p popsize  chromosomes are randomly selected. Moreover, two genes 

from one chromosome are selected, and their positions are swapped (Hassanat et al., 2019). Figure 5 

illustrates this operation for a binary-variable decision. 

 
Figure 5. An example of the mutation operator 

 

3.3.1.6 Evaluation of children and creation of next generation 

In this part of the algorithm, the populations of parents and children are combined, and a population 

twice the initial size of the population is formed. This combination of solutions retains the best solutions 

among the parent and child populations, and elitism is also ensured. In this case, non-dominated ranking 

is used so that each solution is evaluated based on its non-domination (Bouali et al., 2025). Then, a fast 

non-dominated sorting approach and crowding distance are applied, and the element of each population 

is ranked based on crowding distance and non-dominated respectively (non-dominated fronts) . 

 

3.3.1.7 Stopping criteria 

The last step of the genetic algorithm is the stopping criterion. There are no specific stopping criteria 

for multi-objective optimization problems. Consequently, the algorithm stops when it reaches the 

maximum number of defined iterations.  

 

3.3.2 Non-dominated ranking genetic algorithm (NRGA) 

A new multi-objective evolutionary algorithm based on population and non-dominated ranking genetic 

algorithms was proposed by Zhu et al. (2024). This successful algorithm was proposed to optimize non-

convex, discrete, and non-linear problems (Zhu et al., 2024). In NRGA, roulette wheel selection (RWS) 

is utilized instead of BTS. In this RWS, two tiers of rank-based roulette wheel selections are used. One 

tire is used for front selection based on FNDSs, and one tire is used for selecting solutions from the 

front based on CDs (Zhang & Gu, 2024). The procedure is defined such that better elements have a 

higher chance of reproduction and a higher chance of forming the next generation. The flowchart of the 

NRGA and NSGA-II algorithms is shown in Figure 6. 
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Figure 6. Flowchart of the NRGA and NSGA-II algorithms 
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4. Result and discussion 

This section presents the experimental outputs of the algorithms. To do so, the parameters of 

the algorithms are first tuned via the Taguchi method. Subsequently, some popular multi-

objective metrics were introduced. Finally, the defined metrics are calculated on the outputs of 

the metrics, and the outputs are compared using different statistical tests. 
 

4.1 Taguchi method 

Because the output of the problems relies heavily on the proposed algorithm parameters, the Taguchi 

method was used to adjust these parameters. An advantage of the Taguchi method compared to other 

experimental design methods is that optimum tuned parameters are obtained in less time (Jung & Lee, 

2024). One of the most important steps of this method is the selection of an orthogonal array that 

estimates the effective changes in the mean response. In this study, three-level experiments were 

identified as the best design. Considering Taguchi’s standard orthogonal array, the L9 array was 

selected as an appropriate experimental design for tuning the algorithm parameters. A statistical 

measure called the signal-to-noise (S/N) ratio was considered for setting the optimal parameters. This 

ratio involves means and deviations, and a high level is the suitable value of the parameters. The 

considered response variable is the Mean Ideal Distance (MID), a standard metric ratio for multi-

objective algorithms. Because this standard indicator is a “less is better” type, equation (17) is 

considered as its S/N ratio. A proposed meta-heuristic algorithm for each Taguchi experiment was 

performed, and the S/N ratio was calculated using Minitab 16 software. The experimental design and 

L9 orthogonal arrays are shown in Tables (2) and (3).  

 

( )2

10log
sum y

S Ratio
N n

 
 = −
 
 

                                                                                                                      (17) 

 

Table 1. Factors and levels for parameters tuning of both algorithm 

 

Table 2. Experimental design for the L9 orthogonal arrays L9 for NSGA-II 

 

 

 

 

Algorithm Parameters Levels Low (1) Medium (2) High (3) 

NSGA-II 

nPop (A) 75-125 75 100 125 

Pc (B) 0.75-0.95 0.75 0.85 0.95 

Pm (C) 0.1-0.2 0.1 0.15 0.2 

NRGA 

nPop (A) 75-125 75 100 125 

Pc (B) 0.75-0.95 0.75 0.85 0.95 

Pm (C) 0.1-0.2 0.1 0.15 0.2 

Run Order 
Algorithm Parameters  Response Value of 

NSGA-II 

(MID) nPop Pc Pm  

1 1 1 1  35181787 

2 1 2 2  22817843 

3 1 3 3  27143002 

4 2 1 2  17664478 

5 2 2 3  23477538 

6 2 3 1  49640563 

7 3 1 3  43718346 

8 3 2 1  42838449 

9 3 3 2  26331484 
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Table 3. Experimental design for the L9 orthogonal arrays L9 for NRGA 

 

The optimum combinations of the parameters have the red values are shown in Figs. 7 and 8, and also 

are reported in Table 4 for each algorithm 

 

 
Figure 7. S/N ratio’s plot of the parameters of NSGA-II 

 

 
Figure 8. S/N ratio’s plot of the parameters of NRGA 

 

Run Order 
Algorithm Parameters  Response Value of 

NRGA 

MID nPop Pc Pm  

1 1 1 1  41183352 

2 1 2 2  26835710 

3 1 3 3  32956834 

4 2 1 2  19936731 

5 2 2 3  20473546 

6 2 3 1  35935034 

7 3 1 3  39538733 

8 3 2 1  40180460 

9 3 3 2  28353934 
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Table 4. Optimum parameter levels 

Methodology Parameter Optimum value 

NSGA-II 

 

nPop (A) 100 

Pc (B) 0.85 

Pm (C) 0.15 

NRGA 

nPop (A) 100 

Pc (B) 0.85 

Pm (C) 0.15 

 

In the next section, the performances of both algorithms considering the tuned parameters for various 

problems are analyzed.   

 

4.2 The multi-objective standard metrics  

The following standard criteria are presented for evaluating a multi-objective algorithm using the Pareto 

approach. Unlike single-objective optimization, multi-objective optimization modeling involves two 

main criteria to maintain the diversity of the solutions and convergence to the Pareto set solutions 

(Bouali et al., 2025). In this section, four criteria for evaluating multi-objective optimization algorithms 

are presented. 

 

4.2.1 Maximum Spread or Diversity 

Equation 18 shows the calculation of this indicator. 

( )
2

1

  
m

j j
i i

i i
j

D max f min f
=

= −                                                                                                         (18) 

 

In the presented bi-objective model, this measure is equal to the Euclidean distance between the two 

boundary solutions in the objective space. The larger this measure, the better (J. Liu, Sarker, Elsayed, 

Essam, & Siswanto, 2024). 

 

4.2.2 Spacing 

The spacing criteria were proposed by Schott in 1995 (Schott, 1995), in which the relative distance of 

the sequential responses is calculated based on Equation 19. 

( )
2

1

1

1

n

i

i

S d d
n =

= −
−
                                                                                                                 (19) 

In which 
1

n
i
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d
d

n=

=  and, {

2

  1 1

i k
i m m

k n k m

d min f f
   =

= − .  

 
The minimum distance is equal to the sum of the absolute difference between the measured values of the objective 

functions between the i th response and the response of the final non-dominated. Notably, this distance measure 

criterion differs from the minimum Euclidean distance.  
 

4.2.3 Number of Pareto Solution (NOS) 
The NOS measure represents the number of Pareto-optimal solutions that can be found in each algorithm. In the 

case of the multi-objective Pareto-based approach, one of the objectives is to search for a closer front to the origin 

of the coordinates. Therefore, this measure calculates the front distance from (J. Liu et al., 2024) . 

 

4.2.4 CPU Time  
The time required to solve the model using the considered algorithms. 
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4.3 Result analysis 

In this section, the performances of the proposed algorithms with different sizes are evaluated and 

analyzed. Test problems were implemented using the proposed NSGA-II and NRGA algorithms for 20 

problems of different sizes. The parameters were generated from the distributions listed in Table 5. 

 

Table 5. Parameters for test problems 

Distribution Parameter Distribution Parameter 

Uniform(1000,1500) LCMmpt Norm(400,20) Dcpt 

Uniform(3000,3500) UCMmpt Uniform(90,100) Cmdpt 

Uniform(120,130) Cdrpt Uniform(10,15) Hdpt 

3000 CDdpt Uniform(140,150) Crcpt 

1000 CRrpt Uniform(10,15) Hrpt 

Uniform(48,72) hour DUrct 100000 Cd 

Uniform(90,100) Cmdpt 100000 Cr 

 

Here, two classes of problems (small and large sizes) are considered. In the small-size case, to ensure 

the integrity and accuracy of the model, the optimal solutions are obtained using the developed 

mathematical programming and Lp-metric method (p=∞) in GAMS software (Stadler, 1988). Table 6 

demonstrates the objective function value for each problem with various indicators that T=6 and P=4 

parameters in small size. For large sizes, experiments were conducted on 20 test problems, and the 

solution methods were compared. The generated test problems, including the number of manufacturing 

plants (M), distribution centers (D), retailers (R), and clients (C), are different. Four product types and 

six time periods were considered in this problem, and the values are shown in Table 7. In addition, to 

decrease the uncertainties of the solutions, the average of three runs for each problem was considered 

as the final response. To solve the model, 120 problems were run and analyzed. 

 

Table 6. The results evaluation of proposed model for small size problems 

GA Optimal Solution 
Problem Size 

Num 
C R D M 

0.431 0.431 1 1 1 1 1 

0.326 0.326 2 1 2 1 2 

0.227 0.225 2 2 2 1 3 

0.584 0.518 3 2 2 1 4 

0.095 0.061 3 3 2 2 5 

0.253 0.249 4 3 3 2 6 

0.431 0.425 5 4 3 2 7 

0.588 0.583 6 5 4 3 8 

0.109 0.102 7 6 5 3 9 

0.304 0.297 8 7 6 3 10 

 

Table 7. Different levels in the proposed SC problem 

C R D M Test Problem Number 

5 4 2 2 1 

8 5 3 2 2 

10 8 6 4 3 

15 12 8 5 4 

17 12 10 8 5 

20 15 12 10 6 

25 18 15 12 7 

25 20 18 15 8 

30 24 20 15 9 

35 25 22 18 10 

40 30 25 20 11 
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45 33 28 22 12 

45 35 30 25 13 

48 38 33 25 14 

50 40 35 30 15 

60 45 40 30 16 

70 50 45 35 17 

80 60 50 35 18 

90 65 55 40 19 

100 70 60 40 20 

 
After defining the standard criteria for comparing multi-objective problems based on Pareto, the measuring criteria 

for the generated test problems were calculated, as shown in Table 8. 
 

Table 8. Multi-objective metrics obtained for each algorithm 

Proposed MOPSO  Proposed NSGA-II 

Nu

m 

Tim

e 

(sec) 

MID 
N

OS 

Diversit

y 
Spacing  

Tim

e 

(sec) 

MID 
N

OS 

Diversit

y 
Spacing 

130.

28 

5307729

4.36 
8 

705259

2.12 

404583.

737 
 

130.

88 

2704773

1.89 
3 

159352.

57 

53582.6

7 
1 

133.

28 

5554462

6.27 
7 

766564

8.60 

362259.

677 
 

132.

08 

2765996

3.64 
4 

286989.

59 
4234.5 2 

134.

91 

5269328

7.52 
9 

564276

6.07 

749974.

898 
 

135.

12 

2608375

2.08 
4 

403565.

99 

61804.0

1 
3 

147.

95 

5195122

4.40 
6 

432929

9.79 

546059.

149 
 

150.

32 

2475357

4.26 
6 

684178.

22 

70107.5

3 
4 

155.

63 

5812551

1.31 
7 

629273

9.85 

831716.

329 
 

158.

24 

2881286

6.87 
3 

35859.9

2 

11260.9

5 
5 

172.

20 

2101899

16.5 
8 

628413

2.05 

762593.

175 
 

183.

36 

1107350

40.7 
10 

982114

49.1 

163090

63.4 
6 

192.

55 

1895812

96.2 
14 

764833

0.62 

374058.

18 
 

204.

05 

8474519

4.10 
11 

295755

59.1 

368777

8.37 
7 

200.

1 

1645373

85.1 
17 

111591

32.4 

733065.

661 
 

216.

30 

8371991

9.44 
11 

215963

58.2 

158276

5.46 
8 

233.

25 

1794432

33.0 
14 

787090

3.01 

242036.

519 
 

262.

33 

1085406

47.7 
12 

801367

85.2 

647684

1.91 
9 

285.

36 

2049868

28.6 
10 

829726

9.60 

860090.

488 
 

325.

22 

1101884

45.3 
13 

439243

67.2 

121047

6.68 
10 

336.

3 

3897735

48.8 
16 

133476

87.4 

323959.

871 
 

299.

65 

1848674

09.6 
10 

260227

49.2 

188856

9.29 
11 

294.

3 

4114137

91.1 
16 

205816

17.6 

107289

7.60 
 

386.

24 

2166220

76.4 
15 

101476

246. 

148025

24.8 
12 

326.

5 

4260823

15.1 
18 

255007

47.2 

111886

1.11 
 

402.

74 

2627677

59.9 
18 

142446

988. 

323516

8.96 
13 

371.

5 

4700687

33.3 
13 

149980

93.7 

909567.

976 
 

462.

52 

2418841

10.7 
11 

530439

53.0 

553173

2.81 
14 

417.

8 

4304965

95.9 
19 

203367

05.6 

664486.

484 
 

509.

62 

2311372

31.0 
21 

914967

88.8 

349248

0.96 
15 

499.

3 

1636477

91.7 
20 

36488.2

87 

67063.4

8 
 

639.

3 

3755668

8.02 
14 

109589

8.15 

471378.

004 
16 

594.

3 

1512901

65.0 
20 

402122

2.41 

78128.2

28 
 

864.

3 

3221802

6.67 
15 

400202

1.0 

132419

9.48 
17 

866.

5 

1336201

14.2 
18 

315620

0.93 

134797.

79 
 

116

6.5 

3691495

4 
12 

118232

26.0 

155173

8.01 
18 
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107

1.5 

1471670

26.2 
21 

275337.

057 

14174.4

03 
 

137

1.5 

3794775

7.67 
16 

110236

79.0 

174321

1.32 
19 

113

7.8 

1761483

92.6 
17 

311701.

038 

230579.

44 
 

147

5.8 

3528222

2.72 
14 

706968

7.05 

520011

7.29 
20 

385.

06 

2059919

53.9 

13.

9 

874043

0.77 

524047.

710 
 

473.

80 

9747426

8.65 

11.

2 

362257

85.1 

343545

1.82 

Av

e 

 

In figure 9, the performances of the proposed algorithms based on the five metrics are depicted 

graphically. The algorithms were then studied based on their outputs using statistical methods and 

analysis of variance. Figure 10 shows the statistical performance of the algorithms in the form of interval 

plots. 

 

 
Figure 9. Graphical plots of NSGA-II and NRGA algorithms based on metrics 

 

In the above-defined metrics, MID and Spacing and Time metrics have lower values as desirable. In 

addition, NOS and Diversity have higher values as desirable. As shown in the bottom row of Table 8, 

the Diversity and MID metrics in the NSGA-II algorithm and Spacing, MID and Time metrics in the 

NRGA have better performance. Statistical analysis and t-tests were used to investigate and compare 

the problem more precisely. The p-values and test results are shown in Table 9. The confidence intervals 
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are shown in Figure 10. Therefore, the statistical output indicates that there is a difference between the 

algorithms in terms of spacing, diversity, and MID metrics. For spacing NRGA and diversity and MID 

NSGA-II, the superior algorithms are the superior algorithms. For NOS and time was no significant 

difference in the NOS and time among the algorithms. 

 

Table 9. Statistical comparison of NSGA-II with NRGA 

Test Results P-Value Metric 

H0 is rejected 0.011 Spacing 

H0 is rejected 0.012 Diversity 

H0 is not rejected 0.092 NOS 

H0 is rejected 0.006 MID 

H0 is not rejected 0.451 Time 

 

 
Figure 10 Interval Plot of the statistical test on all metrics 

 

5. Conclusion 
5.1 Conclusion 

In this study, an integrated procurement, production, and distribution planning problem for designing f 

four-level supply chain with multiple product types and multiple periods was presented. In addition to 

minimizing the total supply chain costs, the due date and lost demand rate of the products for customers 



2025 | Annals of Management and Organization Research / Vol 7 No 1, 45-65 

63 

have also been minimized. Because the multi-objective supply chain network design problem is NP-

Hard, two multi objective meta- heuristic algorithms were developed to solve the problem. The NSGA-

II and NRGA algorithms were created based on the Pareto method, and their performances were 

compared. Selecting the algorithm parameter is a critical task; therefore, the Taguchi method was used 

for tuning the parameter. Finally, statistical analysis was used to choose the most efficient method 

among the presented models.  

 

5.2 Limitation 

In today's business world, there are a wide range of supply chain types with various characteristics. This 

study focuses on a typical supply chain. Therefore, modeling decision-making in a supply chain, 

considering specific constraints, considerations, and features, requires a broad scope of research. For 

example, the potential perishability of goods, the existence of time windows for delivering goods to 

customers, and, most importantly, the uncertainty of demand information have not been addressed in 

this study.  

 

The proposed model includes a large number of variables; consequently, the feasible solution space is 

concave, highly dispersed, and discontinuous. In this study, no alternative methods were used to solve 

the model, and the efficiency of the proposed algorithm was evaluated. Furthermore, hybrid heuristic 

algorithms have not been used to improve the search for optimal solutions in this context. In the hybrid 

approach, some heuristic algorithms generate initial solutions, whereas others explore nearby solutions 

to enhance the search for viable options. 

 

Moreover, a large number of variables were used in the proposed model. Consequently, the feasible 

solution space is concave, highly dispersed, and discontinuous. Therefore, employing other methods to 

solve the model and utilizing hybrid heuristic algorithms can be beneficial for better searching the 

feasible solution space. 

 

5.3 Suggestion 

In the real world, some parameters are not precisely defined. Therefore, they are sometimes expressed 

linguistically. It is recommended that future research utilize fuzzy variables to incorporate this type of 

information into models and make decisions accordingly. For future research, it would be beneficial to 

consider discounts on product prices in both all-unit and incremental formats.  

 

Today, the concepts of collaboration and strategic partnerships have gained significant attention from 

researchers. Collaboration with key suppliers can impact supply chain design, inventory levels, and 

distribution systems. Therefore, the concept of strategic alliances should be considered in modeling and 

determining inventory levels across different layers of the supply chain. 
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