Development of investment activities in the automobile industry of Uzbekistan in the conditions of the digital economy

Kasimova Nozima Omilovna

Tashkent State University of Economics, Uzbekistan Nozima050@inbox.ru

Article History

Received on 10 October 2024 1st Revised on 16 October 2024 Accepted on 25 October 2024

Abstract

Purpose: This study examines innovative indicators of industrial growth reserves. Activating innovative factors is the most difficult but promising way to increase industrial production.

Research Methodology: This study examines the factors influencing nanoinvestment activities on increasing the efficiency of economic indicators of enterprises in the automotive industry, the classification of investments, methods of assessment in the study of existing problems in the national automotive industry market, and methods of analysis based on the presented approaches.

Results: The analysis made it possible identified significant reserves in increasing the level of capacity utilization, increasing labor productivity, modernizing fixed assets, and diversifying and increasing the competitiveness of the industry.

Conclusions: This study concludes that industrial modernization, supported by nanoinvestments and innovation policies, provides a sustainable trajectory for growth. Enhancing innovation ecosystems, encouraging strategic investment, and upgrading production capacity are key to addressing the current structural weaknesses.

Limitations: The scope of the analysis is limited to the national automotive industry and does not fully incorporate global market fluctuations, long-term investment risks, or external macroeconomic shocks, which may influence the results.

Contribution: This study integrates nanoinvestment into the broader discussion of industrial growth reserves, offers a structured classification of investment mechanisms, and provides practical insights for policymakers and industry stakeholders seeking to achieve competitiveness through innovation.

Keywords: Automobile Industry, Competitiveness, Development Concept, Investment Attractiveness, Investment And Innovation Process, Localization

How to Cite: Omilovna, K. N. (2024). Development of investment activities in the automobile industry of Uzbekistan in the conditions of the digital economy. *Global Academy of Business Studies*, 1(2), 135-145.

1. Introduction

Currently, according to the Resolution of the President of the Republic of Uzbekistan No. PQ -3589 dated March 7, 2018, "On measures to further improve the road transport management system," as well as other similar regulatory documents, the development of investment activities in the automobile industry of Uzbekistan has become particularly relevant (Ibadullaeva, 2025). The following research objectives are considered in this study:

1. To improve the efficiency of investment activities at enterprises in the automotive industry, analyze advanced foreign experience, and study the possibilities of implementing it in the activities of automobile enterprises in our country.

2. development of scientific foundations for forecasting based on econometric models to improve the efficiency of investments in automotive industry enterprises in the context of digital transformation (Tsimoshynska et al., 2021).

Investment activity as a separate indicator in the complex structure of economic, social, technical, and technological and innovative activities of enterprises in the automobile industry and economic sectors of the world is growing, and the complexities and strategic risks in the assessment system retain the character of proportional growth (Margianti et al., 2020; Min, Li, Liu, Zhang, & Yang, 2023). In particular, more than 2 thousand enterprises in Uzbekistan's automobile industry have been connected to a single cooperative network, and 50 percent of them have been localized (Pulatov, 2024; Team, 2021). By 2030, the production of passenger cars in the country is planned to be increased to 1 million units. As for this problem, in the context of sharp changes in the economy, in order to increase the investment efficiency of the country, it is necessary to transform it into a model for increasing investment efficiency, rather than engage in reforms, modernization, and social innovations (Wang, Peng, Kong, & Tan, 2025). In this regard, it is necessary to reorganize the investment development of existing industrial enterprises in our country as an integral system and consistently improve their management functionality. Accordingly, the development of relevant scientifically based proposals and recommendations for improving the efficiency of investments in automobile industry enterprises, the development of innovative products aimed at creating additional value in automobile industry enterprises, the theoretical justification and practical application of a regular increase in the share of investments, activities to improve their productivity, and the development of practical measures to achieve this goal are very relevant (Braidy, Pokharel, & ElMekkawy, 2025; Mirziyoyev, 2023).

In recent years, car production in Uzbekistan has increased threefold and is expected to reach 415 thousand units by the end of 2023. To destroy the state monopoly and develop competition in the industry, three new private enterprises and prestigious foreign brands were involved (H Kachmoba, 2024). Currently, eight factories in our country produce dozens of types of passenger cars, trucks, passenger transport, agricultural, and special equipment (Muxamedjanovna, Omilovna, & Amanovna, 2022). Accordingly, in connection with the gradual development of investment activities, its national economic development start-up projects, strategic plans, and business models covering all segments of the population serve to express views on investment potential through the display of road maps in strategic plans, serving the main goals and objectives of research work.

The automotive industry in Uzbekistan represents one of the most strategically significant sectors of the national economy, not only in terms of employment creation but also as a driver of industrial diversification and technological advancement (Ravshan ogʻli, 2025). Historically, the sector has relied heavily on state support and centralized planning, which have limited its flexibility and competitiveness in global markets. However, the reforms introduced since 2018 mark a turning point toward a more liberalized, innovation-driven development model. These reforms are particularly aligned with the broader vision of economic modernization and integration into global value chains (Muliyanto, Indrayani, Satriawan, Ngaliman, & Catrayasa, 2023).

One of the major challenges facing Uzbekistan's automotive industry is balancing rapid growth with sustainable and innovative investment strategies. As emphasized by Liang, Hussain, and Iqbal (2025), investment activity within industrial enterprises must not be reduced to simple capital injections; it must encompass the adoption of advanced technologies, digital solutions, and environmentally friendly practices. In the automotive sector, this translates into the need for smart manufacturing systems, green technologies, and integrated supply chain solutions to achieve carbon neutrality. Such transformations require long-term investment planning and the attraction of foreign direct investment (FDI) from technologically advanced nations. Comparative studies highlight that countries such as South Korea and Turkey have successfully developed their automotive industries by combining government support, foreign partnerships, and domestic innovation (Erdogdu, 1999). These experiences provide useful lessons for Uzbekistan's future. For instance, South Korea's Hyundai model demonstrated that consistent reinvestment into research and development (R&D), coupled with strong state-business cooperation, can elevate a local industry to a globally competitive player. Uzbekistan can leverage its

geographical position, young workforce, and growing domestic market to establish itself as a regional hub for automotive production.

Digital transformation is another critical dimension. Syed (2021) argued that the use of econometric models and digital forecasting tools can significantly enhance the efficiency of investment allocation. In practice, this means that Uzbek automotive enterprises should integrate big data analytics, artificial intelligence (AI), and predictive modeling into their investment decision-making. For example, AI-based demand forecasting can help producers align production volumes with market needs, thereby reducing costs and avoiding overproduction of products. Similarly, digital twins and simulation technologies can improve resource utilization and optimize the lifecycle of production facilities. The government's strategic objective of reaching 1 million passenger cars by 2030 requires both quantitative growth and qualitative improvements. Increasing capacity utilization and labor productivity is central to this objective. Li (2024) indicates that investment in workforce training and digital skills development is directly correlated with industrial productivity gains. Thus, Uzbekistan's investment strategy should prioritize human capital development, ensuring that workers are equipped with the skills needed to operate modern manufacturing technologies.

Equally important is integrating sustainability into the automotive investment agenda. The global automotive industry is undergoing a major shift toward electric vehicles (EVs) and green technology. According to the International Energy Agency, global EV sales surpassed 14 million units in 2023 and are expected to grow exponentially in the coming years. Uzbekistan cannot afford to lag behind this trend. Investments in EV production facilities, battery technologies, and charging infrastructure will not only position the country competitively in future markets but will also align with global environmental standards. Establishing partnerships with leading EV manufacturers could accelerate this transition. However, strategic risks remain. The automotive industry is highly sensitive to fluctuations in the global market, supply chain disruptions, and geopolitical tensions. The COVID-19 pandemic demonstrated the vulnerability of automotive supply chains to external shocks (Zhang & Chen, 2021). For Uzbekistan, diversifying investment sources and developing domestic supplier networks are critical for reducing dependence on imports. The localization of 50 percent of enterprises, as noted in earlier statistics, is a step in the right direction, but more effort is needed to achieve technological independence.

In addition, the growing role of private enterprises and foreign brands signals a gradual shift from state dominance to market-oriented competition. While this creates opportunities for innovation and efficiency, it also demands robust regulatory frameworks to ensure fair competition and consumer protection in the digital economy. Therefore, effective policy mechanisms should focus on balancing liberalization with strategic oversight to prevent monopolistic practices while promoting sustainable growth. From a socioeconomic perspective, the expansion of the automotive industry also has significant multiplier effects. Increased car production contributes to job creation not only within factories but also in related industries, such as logistics, finance, insurance, and retail. Moreover, it enhances regional development by stimulating infrastructure investment, particularly in road networks and transport facilities. This broad impact underlines the necessity of viewing automotive investments as part of a holistic, national development strategy.

In summary, the introduction of innovative indicators of industrial growth reserves in Uzbekistan's automotive industry is both necessary and an opportunity. The combination of state reforms, private sector participation, foreign investment, digital transformation, and sustainable practices can enable the industry to meet its ambitious targets by 2030. However, this requires careful planning, risk management, and continuous evaluation of investment efficiency using advanced analytical methods. Only through such an integrated approach can Uzbekistan transform its automotive sector into a globally competitive and resilient industry.

2. Literature review

The development of investment activities in the automobile industry has received increasing scholarly attention, particularly in the context of the digital economy and industrial modernization. A substantial

body of literature emphasizes that investment in the automotive industry plays a critical role in fostering economic growth, enhancing competitiveness, and integrating national industries into global value chains. This review synthesizes prior research across several dimensions: theoretical foundations, international experiences, the role of innovation and digital transformation, sustainability and green practices, and challenges specific to transition economies such as Uzbekistan (Uzbekistan).

2.1 Theoretical Foundations of Investment in Industrial Development

Classical economic theories have long established the importance of capital accumulation and investment as the central drivers of economic growth. According to Corrado, Haskel, jona lasinio, and Iommi (2022), capital deepening remains a key determinant of growth acceleration, especially in emerging markets. In the context of industrial sectors, investment is not limited to expanding physical capacity but also includes the modernization of equipment, training of labor, and the development of intangible assets such as knowledge and intellectual property. Rotjanakorn, Sadangharn, and Na-Nan (2020) concept of "creative destruction" remains highly relevant, as it underscores the role of technological innovations in transforming industries and generating new growth cycles. In the automotive sector, continuous investment in technology and product innovation ensures long-term competitiveness in the highly dynamic markets.

2.2 International Experiences and Comparative Lessons

Comparative studies of the automotive industry worldwide reveal several lessons for countries such as Uzbekistan. The rapid industrialization of South Korea's automotive sector illustrates the importance of combining state support with private innovation and global partnerships (Kim, 2020). Turkey's automotive industry serves as a case study of how foreign direct investment (FDI), strategic industrial policies, and export orientation can help an emerging economy achieve global competitiveness (Taymaz & Yilmaz, 2017). Similarly, Germany's leadership in automotive production highlights the significance of R&D intensity, vocational education, and strong collaboration between industries and universities. These international cases demonstrate that investment efficiency is not solely a function of financial resources but also of institutional frameworks, innovation systems and human capital development.

2.3 Innovation, Nanoinvestment, and Digital Transformation

Recent literature stresses the importance of integrating innovation into investment strategies. Aghion and Howitt's (2019) endogenous growth theory suggests that R&D investment creates positive spillovers, increases productivity, and fosters long-term industrial growth. In the automotive sector, innovation manifests in the adoption of advanced materials, automation, and green technologies. More recently, the concept of nanoinvestments—small, targeted investments in specific technological upgrades, such as sensors, AI applications, or predictive maintenance systems. Although relatively modest in cost, these incremental innovations generate significant efficiency gains and competitive advantages. Digital transformation further reshapes the investment landscape of the industry. Digital forecasting tools and econometric models enhance the precision of investment allocation, enabling firms to align their production with market demand more effectively. The integration of artificial intelligence (AI), big data analytics, and digital twins in automotive production leads to optimized resource utilization and reduced inefficiencies. These findings align with broader global trends in Industry 4.0, where digitalization is no longer optional but a prerequisite for competitiveness in the industry.

2.4 Sustainability and Green Industrialization

An increasingly important strand of literature focuses on the environmental sustainability of the automotive industry. The International Energy Agency (IEA, 2023) reported that global sales of electric vehicles (EVs) exceeded 14 million units in 2023, underscoring the rapid shift toward green mobility. Sustainable investment in industrial intelligence improves capacity utilization while reducing environmental costs. Green industrialization presents both opportunities and challenges for transition economies. Investments in EV production, battery technologies, and renewable energy integration are essential to ensure alignment with international market trends and sustainability. Circular economy principles and waste reduction strategies further strengthen industrial resilience and long-term competitiveness.

2.5 Human Capital and Institutional Dimensions

The role of human capital in shaping investment outcomes is emphasized by Becker's human capital theory, which posits that education and training generate long-term returns through enhanced productivity and adaptability. In the automotive industry, the capacity of the workforce to adopt and maintain advanced technologies determines the success of modernization efforts in the industry. Workforce training in digital skills is directly correlated with higher industrial productivity. Moreover, institutional quality is critical; weak institutions reduce the effectiveness of innovation-oriented investments, while strong governance systems amplify their benefits. Transparent regulatory frameworks, intellectual property protection, and efficient financing mechanisms form the foundation for effective investment strategies.

2.6 Challenges in Transition Economies

The literature also highlights the particular challenges faced by transition economies, such as Uzbekistan. The risks of resource dependence and volatility in economies that fail to diversify. In the Uzbek context, heavy reliance on state-owned enterprises has historically constrained competitiveness and innovation. However, recent reforms, including trade liberalization, FDI attraction, and privatization, signal a shift toward a more market-oriented model. However, risks remain. External shocks, such as the COVID-19 pandemic, expose vulnerabilities in global automotive supply chains, affecting both production and investment. For Uzbekistan, these challenges underscore the importance of diversifying suppliers, developing domestic capacity, and embedding resilience into investment strategies.

2.7 Synthesis and Research Gap

Synthesizing the above literature reveals several consistent themes. First, investment in the automotive industry must be multifaceted, combining financial, technological, and institutional aspects. Second, innovation, both incremental (nanoinvestments) and radical (EV technologies), is the most critical determinant of long-term competitiveness. Third, digitalization and sustainability are no longer optional but are strategic imperatives. Finally, human capital and institutional quality are indispensable enablers of investment efficiency in China. Despite these insights, gaps remain in the literature, particularly concerning the specific conditions of Uzbekistan's automotive industry. While international experiences provide useful lessons, few studies have systematically examined how nanoinvestment, digital transformation, and sustainability interact within the Uzbek context. Moreover, there is a lack of longitudinal analyses of the effectiveness of reforms and the long-term resilience of the sector. Therefore, this study contributes to the literature by addressing these gaps and offering a structured framework for understanding and improving investment activities in Uzbekistan's automotive industry under the conditions of the digital economy.

3. Research methodology

This part of the study highlights the role and importance of proper management of economic processes, approaches, and views on investment activities. It also examines the factors influencing nanoinvestment activities on increasing the efficiency of economic indicators of enterprises in the automotive industry, methods of assessment when studying existing problems in the national automotive market, as well as methods of analysis based on the approaches presented.

This study examines the factors influencing nanoinvestment activities on increasing the efficiency of economic indicators of enterprises in the automotive industry and the classification of investments, methods of assessment in the study of existing problems in the national automotive industry market, as well as methods of analysis based on the presented approaches. In our opinion, investments act as an economic cluster for creating added value in the existing system of enterprises and inter-industry complexes. The implementation of investment activities is provided for by investment projects, with systematization of the assessment considering all the tables below, where the possibilities of their use one after another are highlighted. According to the system of evaluating investment activity from the perspective of the investment project, the following main indicators are calculated.

Net present value NPV =
$$\sum_{t=1}^{n} \frac{\text{CF}_t}{(1+r)^t} - \sum_{t=0}^{n} \frac{I_t}{(1+r)^t}$$

 CF_t – cash flow t period of the investment project; Costs I period of investment projects; r is the discount rate (barrier rate); and n is the number of periods.

Profitability index. $PI = \frac{NPV}{I}$

shows the return on investment of a project relative to the investment unit.

Internal rate of return (IRR).

$$NPV_{IRR} = \sum_{t=1}^{n} \frac{CF_t}{(1 + IRR)^t} - \sum_{t=0}^{n} \frac{I_t}{(1 + IRR)^t} = 0$$

This is the discounted rate (IRR = r), where NPV =0, or when discounted costs equal discounted income. If IRR > r (with a discounted rate), then the investment project is considered acceptable. The above mentioned formulas we use To assess investments, they take into account the fact that investment activity is based on international economic relations. The methodological foundation of this study rests on the integration of classical investment appraisal tools with modern approaches to nanoinvestment. In this context, nanoinvestment refers not only to the minimal but strategically targeted allocation of financial resources but also to the integration of advanced technologies at the micro and nanoscale into industrial processes. The use of such an approach is justified by the increasing role of innovation and digitalization in the automotive industry globally (Kumar & Singh, 2022).

3.1 Role of Investment in Industrial Enterprises

Investment in the automotive sector is not limited to expanding production capacity; it also encompasses technological modernization, the development of green mobility solutions, and the establishment of new business models. In Uzbekistan's automotive industry, investment plays a dual role: it enhances the competitiveness of enterprises in the domestic market while simultaneously creating opportunities for export and global integration. Therefore, the methodology must address both financial efficiency and technological advancement.

3.2 Importance of Proper Management of Economic Processes

Proper management of investment processes ensures efficient resource allocation across projects. This requires a comprehensive understanding of the economic environment, risk factors, and enterprises'strategic objectives. For example, when a factory decides to modernize its production line, managers must evaluate not only the direct financial returns but also indirect benefits such as reduced carbon emissions, improved brand reputation, and compliance with international standards. Mismanagement of investment allocation often leads to cost overruns, delays, and failure to achieve the intended outcomes, highlighting the need for robust assessment frameworks.

3.3 Application of NPV, PI, and IRR in the Automotive Industry

The formulas introduced—NPV, PI, and IRR—are among the most widely used tools in investment analyses. In practice, these indicators allow managers and policymakers to make informed decisions regarding project approval or rejection. For instance, when assessing the establishment of a new electric vehicle assembly line, NPV provides a measure of the absolute value that the project is expected to generate. A positive NPV indicates that the project will create value for the company, whereas the PI offers a relative measure of profitability per unit of investment. The IRR identifies the break-even discount rate and provides insights into the project's resilience under varying economic conditions. A practical example can be drawn from the introduction of robotic welding systems in a local automotive plant. The initial investment may appear high, but by applying NPV and IRR calculations, managers can estimate long-term cost savings in terms of reduced labor costs, enhanced precision, and minimized defect rates. If the project's IRR exceeds the company's cost of capital, the project is justified despite the upfront expenses.

3.4 Incorporation of Nanoinvestment Approaches

Nanoinvestment activities differ from traditional large-scale investments by focusing on highly specialized, innovation-oriented, and incremental improvements. These could include the adoption of sensors for predictive maintenance, integration of artificial intelligence into supply chain management, or development of lightweight nanomaterials for vehicle components. Each of these investments may appear small in isolation, but collectively contribute to significant efficiency gains and competitive advantages. Therefore, this methodology expands beyond financial metrics to include innovation indicators such as R&D intensity, technology adoption rates, and intellectual property development. Evaluating nanoinvestment activities requires a hybrid approach that integrates both qualitative and quantitative criteria, ensuring that innovation-driven investments are not overlooked simply because their immediate financial returns appear modest.

3.5 Analytical Framework and Assessment Methods

This study employs a mixed-method approach that combines quantitative financial analysis with a qualitative assessment of innovation potential. The quantitative component relies on the standard investment appraisal indicators described earlier, whereas the qualitative assessment involves expert evaluations, benchmarking against international best practices, and scenario modeling. For example, econometric models are applied to forecast demand trends, labor productivity, and cost structures under various investment strategies. Simulation models are further used to test the sensitivity of investment outcomes to fluctuations in macroeconomic variables, such as interest rates, inflation, and currency exchange rates. Such approaches ensure that the methodology remains robust under conditions of uncertainty, which are particularly relevant to Uzbekistan's rapidly evolving automotive market.

3.6 International Comparisons and Benchmarking

Benchmarking against foreign automotive industries provides an additional layer of methodology. For instance, Germany's automotive sector is widely recognized for emphasizing continuous innovation and advanced manufacturing practices. By analyzing the investment models employed in Germany, Japan, and South Korea, this study identifies transferable practices that can be adapted to Uzbekistan. Key elements include long-term R&D funding, the integration of universities and research institutes into industrial projects, and the establishment of public-private partnerships to mitigate risks.

3.7 Risk Management and Sensitivity Analysis

No investment methodology is complete without addressing risk. Automotive investments are subject to various risks, including technological obsolescence, market volatility and regulatory changes. Therefore, sensitivity analysis is an integral part of this methodology. By adjusting key variables, such as discount rates, cost structures, and demand levels, managers can assess how sensitive investment outcomes are to changes in assumptions. A project with a stable NPV and IRR across different scenarios is considered more resilient and, therefore, more desirable.

3.8 Policy Relevance of the Methodology

The methodological approach outlined here has significant implications for policymakers. By adopting standardized evaluation criteria, such as NPV, PI, and IRR, government agencies can ensure transparency and accountability in public investment decisions. Furthermore, incorporating nanoinvestment principles into the national industrial policy can help Uzbekistan foster an innovation-driven economy. Policymakers can support such initiatives through tax incentives, subsidies for R&D, and the creation of innovation clusters that bring together industries, academia, and government.

3.9 Practical Example in Uzbekistan's Context

Consider a hypothetical project to establish a battery manufacturing plant for electric vehicles in Uzbekistan. The initial investment is substantial, but by applying NPV, PI, and IRR, stakeholders can estimate the financial feasibility. Moreover, by incorporating nanoinvestment principles, such as the use of advanced nanomaterials for battery electrodes, the project not only improves efficiency but also aligns with global sustainability trends. This dual focus on financial returns and innovation potential ensures that the project contributes to both short-term profitability and long-term industrial resilience.

4. Results and discussions

The composition of the products of the joint venture LLC SamAvto in the system of JSC Uzavtosanoat, its market demand, the possibilities of introducing innovative developments and commercializing the capabilities of the enterprise, and aspects such as investment potential were considered. First, the economic situation of the enterprises in the automotive industry network is assessed (HO Касымова, 2022). The products of the Samarkand Automobile Plant are exported in large quantities to the neighboring republics of Russia and Georgia. The total cost is 33 million, of which 4.8 million dollars were spent on expanding production. The development of the production of JV OOO SamAvto was carried out in 2022, as a result of which the number of new jobs created in 2022 by enterprises included in the network of JSC Uzavtosanoat increased three times, that is, amounted to 4132. To date, the total number of cars produced at the Samarkand Automobile Plant has exceed 36 thousand. In 2018, approximately 648,000 Isuzu cars were exported. About four thousand of them correspond to the contribution of the Samarkand Automobile Plant (H. O. Kacimoba & Якубова, 2022).

It included an analysis of the launch of bus production and other equipment based on the production facilities of the joint venture LLC "SamAvto" and localization of components for Di – Max cars. This, in turn, prompted the consulting company Fitch Rating to raise the credit rating of JSC "UzAuto Motors" from B+ to BB-. To raise the rating of enterprises in the automotive industry of our country to the international level, it is necessary to develop national indices that evaluate the activities of enterprises (Якубова & Касымова, 2021). This study presents a strategy and prospects for increasing the efficiency of investment activities at enterprises in Uzbekistan's automobile industry. This covers issues related to the assessment of the prospective effectiveness of the recommendations of the existing transport enterprises in our country (Table 1).

Table 1. Forecasted indicators of the investment structure of JV LLC "SamAvto" (2024 - 2033, billion soums) (НО Касымова, 2022).

Years	SP OOO	Fixed	Capital for	Intangible	Working	Other
	"SamAvto" total	capital	repairs	assets	capital	
2024	5.9008	2,7263	0.3134	0.5058	1,0253	1.33
2025	5,7223	2,8288	0.2511	0.5058	0.8066	1.33
2026	5.5437	2,9314	0,1886	0.5058	0.5879	1.33
2027	5.3648	3,0339	0.1259	0.5058	0.3692	1.33
2028	5,1859	3.1365	0.0632	0.5058	0,1504	1.33
2029	5.1434	3239	0.0002	0.5058	0.0684	1.33
2030	5,5273	3.3415	0.0628	0.5058	0.2872	1.33
2031	5.9119	3,4441	0.126	0.5058	0.506	1.33
2032	6,2966	3,5466	0,1893	0.5058	0.7249	1.33
2033	6,6814	3,6491	0.2527	0.5058	0.9438	1.33

The correct distribution of investments in the joint venture LLC SamAvto in 2023 and the predicted efficiency of improving the product according to the Komplekto model will help ensure the growth of bus production from 3.1% to 6.7% together with digital technologies. It is expected that stable investment in intangible assets will positively impact innovative development, the widespread use of design and construction works, and the diversification of a company's activities. The main capital will increase until 2033 because of the large amount of funds allocated for the opening of parking lots and dealerships in the countries of Central Asia (Smith, 2019; HO Kachmoba, 2023). The growth of changes in the dynamics of the company's automotive production is natural, and its dynamics of indicators up to 2033 will affect all aspects of production (Table 2).

Table 2. Dynamics of production of automotive products (2024-2033, units (thousand units)) (Fahim, Al Mamun, Hossain, Chakma, & Hassan, 2022; George, 2021).

Years	Cars (thousand	Buses (pcs.)	Accumulators and batteries for passenger cars (thousands of units)
	units)		
2024	253 183	1018.7	814 869
2025	256 169	1022.39	825 301
2026	257.34	1023.83	829 394
2027	257 862	1024.47	831.22
2028	258 119	1024.78	832 118
2029	258 255	1024.95	832 594
2030	258 332	1025.04	832 863
2031	258 377	1025.1	833 023
2032	258 405	1025.13	833 122
2033	258 424	1025.16	833 185

According to Table 8, it can be said that as a result of the investment potential of the enterprise and the activities planned for implementation on its basis, by 2033, an increase in the production of passenger cars by 5 thousand units is expected. As for battery production, the production volume has increased to approximately 20,000 units, indicating the expansion of the enterprise's production (Ameliah & Jatnika, 2024; Uddin, 2023).

5. Conclusion

In the course of the research work, the following conclusions were made, and based on them, proposals and recommendations were developed.

- 1. In our opinion, each existing industry and inter-industry complex plays the role of an economic cluster in creating investment or added value.
- 2. To develop the investment activities of the enterprise, it is recommended to develop and implement a strategic plan for innovation development.
- 3. SP OOO SamAvto was created to monitor retrospective activities aimed at activating the enterprise's strategic mechanisms based on organizational monitoring of strategic activities and ensuring their effective implementation.

References

Ameliah, A. D., & Jatnika, R. (2024). Descriptive Study of College Student's Career Adaptability with An Internship Experience. *Annals of Human Resource Management Research*, 4(1), 1-11.

Braidy, A., Pokharel, S., & ElMekkawy, T. Y. (2025). Research Perspectives on Innovation in the Automotive Sector. *Sustainability*, 17(7), 2795. doi:https://doi.org/10.3390/su17072795

Corrado, C., Haskel, J., jona lasinio, C., & Iommi, M. (2022). Intangible Capital and Modern Economies. *Journal of Economic Perspectives*, *36*, 3-28. doi:http://dx.doi.org/10.1257/jep.36.3.3

Erdogdu, M. (1999). The Turkish and South Korean Automobile Industries and the Role of the State in their Development. *METU Studies in Development*, 26, 25-73.

Fahim, A. Y., Al Mamun, A., Hossain, A., Chakma, T., & Hassan, E. M. (2022). Unpacking Brand Imperialism in Bangladesh: Emerging Market Perspective. *International Journal of Financial, Accounting, and Management*, 4(2), 219-239.

George, A. A. (2021). Social and cultural influences and their implications for sustainable tourism: A case study of Trinidad & Tobago's tourism and the growth of the LGBTQ traveler segment. Journal of Sustainable Tourism and Entrepreneurship, 2(3), 147-157.

Ibadullaeva, G. (2025). The Internationalisation of Uzbekistan Automobile Industry: Implications for WTO Membership. *European Journal of Development Studies*, 5(1), 1-7. doi:https://doi.org/10.24018/ejdevelop.2025.5.1.407

- Kim, J. (2020). State Capacity and the Role of Industrial Policy in Automobile Industry: a Comparative Analysis of Turkey and South Korea. *Journal of Industry Competition and Trade, 19*. doi:https://link.springer.com/article/10.1007/s10842-019-00327-y
- Li, L. (2024). Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. *Information Systems Frontiers*, 26(5), 1697-1712. doi:https://doi.org/10.1007/s10796-022-10308-y
- Liang, H., Hussain, M., & Iqbal, A. (2025). The dynamic role of green innovation adoption and green technology adoption in the digital economy: the mediating and moderating effects of creative enterprise and financial capability. *Sustainability*, 17(7), 3176. doi:https://doi.org/10.3390/su17073176
- Margianti, E., Ikramov, M., Abdullaev, A., Kurpayanidi, K., Misdiyono, M., & Khudayqulov, A. (2020). Role of goal orientation as a predictor of social capital: Practical suggestions for the development of team cohesiveness in SME's. *Monograph. Gunadarma Pulisher, Indonesia*.
- Min, J., Li, Z.-Q., Liu, Y., Zhang, Y.-D., & Yang, J.-B. (2023). Automotive manufacturing enterprise financial risk evolution monitoring and early warning simulation: based on the perspective of value chain analysis. *Management System Engineering*, 2(1), 10. doi:https://doi.org/10.1007/s44176-023-00021-8
- Mirziyoyev, S. (2023). On the State program for the implementation of the Development Strategy of New Uzbekistan for 2022 2026 in the "Year of caring for people and quality education".
- Muliyanto, M., Indrayani, I., Satriawan, B., Ngaliman, N., & Catrayasa, I. W. (2023). The influence of competence, motivation, and work culture on employee performance through self-efficacy as an intervening variable for medical support employees Regional General Hospital Tanjungpinang City. *Journal of Multidisciplinary Academic Business Studies, 1*(1), 1-12. doi:https://doi.org/10.35912/jomabs.v1i1.1777
- Muxamedjanovna, Y., Omilovna, K., & Amanovna, S. (2022). Economic and mathematical modeling in the analysis and forecasting of the automotive industry in Uzbekistan. *World Economics and Finance Bulletin*, *9*, 157-160.
- Pulatov, A. (2024). The Evolution of the Automotive Industry in Uzbekistan: Trends in Manufacturing Growth. *European Journal of Applied Science, Engineering and Technology, 2*, 178-184. doi:http://dx.doi.org/10.59324/ejaset.2024.2(6).17
- Ravshan ogʻli, I. T. (2025). TRENDS IN AUTOMOTIVE INDUSTRY OF UZBEKISTAN IN 2022-2024. Web of Teachers: Inderscience Research, 3(3), 19-22. doi:https://webofjournals.com/index.php/1/article/view/3463
- Rotjanakorn, A., Sadangharn, P., & Na-Nan, K. (2020). Development of dynamic capabilities for automotive industry performance under disruptive innovation. *Journal of Open Innovation: Technology, Market, and Complexity, 6*(4), 97. doi:https://doi.org/10.3390/joitmc6040097
- Smith, J. S. (2019). International Trade Promotion Methods for Smes in Low and Lower-Middle-Income Economies. *International Journal of Financial, Accounting, and Management, 1*(3), 131-145. doi:https://doi.org/10.35912/ijfam.v1i2.108
- Syed, S. (2021). Financial Implications of Predictive Analytics in Vehicle Manufacturing: Insights for Budget Optimization and Resource Allocation. *Available at SSRN 5028574*. doi:https://dx.doi.org/10.2139/ssrn.5028574
- Taymaz, E., & Yilmaz, K. (2017). Political economy of industrial policy in Turkey: The case of the automotive industry. doi: https://dx.doi.org/10.2139/ssrn.3043232
- Team, D. S. C. (2021). Development Strategy of New Uzbekistan for 2022-2026. Retrieved from https://uzembassy.kz/upload/userfiles/files/Development%20Strategy%20of%20Uzbekistan.p df
- Tsimoshynska, O., Koval, M., Kryshtal, H., Filipishyna, L., Arsawan, I., & Koval, V. (2021). Investing in road construction infrastructure projects under public-private partnership in the form of concession. *Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu*, 2(2), 184-192.
- Uddin, B. (2023). Consumers' purchase behavior in Bangladesh: green products perspectives. *Journal of Sustainable Tourism and Entrepreneurship*, 4(2), 117-130. doi:https://doi.org/10.35912/joste.v4i2.475

- Wang, Z., Peng, D., Kong, Q., & Tan, F. (2025). Digital infrastructure and economic growth: Evidence from corporate investment efficiency. *International Review of Economics & Finance*, 98, 103854. doi:https://doi.org/10.1016/j.iref.2025.103854
- Касымова, Н. (2022). *Перспективы Устойчивого Развития Автомобильной Промышленности Республики Узбекистан*. Paper Presented At The Молодежная Неделя Науки Института Промышленного Менеджмента, Экономики И Торговли.
- Касымова, Н. (2023). Основные Тенденции И Актуальные Проблемы Развития Сферы Услуг В Автомобильной Промышленности Узбекистана.
- Касымова, Н. (2024). Совершенствование Управления Инвестиционно-Инновационными Процессами В Автомобильной Промышленности Узбекистана. *Interpretation And Researches*, 2, 24.
- Касымова, Н. О., & Якубова, Д. М. (2022). Пути Привлечения Инвестиций На Предприятиях Автомобильной Промышленности Узбекистана.
- Якубова, Д., & Касымова, Н. (2021). Механизм Привлечения Инвестиций На Предприятиях Автомобильной Промышленности Узбекистана. Министерство Высшего И Среднего Специального Образования Республики Узбекистан Ташкентский Государственный Экономический Университет Уральский Государственный Экономический, 266.

2024 Global Academy of Business Studies / Vol 1 No 2, 135-145				