

Workplace training mediates safety culture towards patient safety

Marcella Aprilia Lonatrista¹, Hery Winoto Tj²

Krida Wacana Christian University, Jakarta, Indonesia^{1,2}

kemala_marcella@yahoo.co.id¹

Article History

Received on 24 August 2025

1st Revised on 13 September 2025

2nd Revised on 18 October 2025

Accepted on 28 October 2025

Abstract

Purpose: This study aims to determine the effect of Safety Culture on Patient Safety, mediated by Work Training, among nurses in the Surgical Hospital CAP. The research focuses on how organizational safety values and continuous training contribute to reducing adverse events and improving healthcare service quality.

Methodology: A quantitative approach was employed with a sample of 100 nurses selected through purposive sampling. Data were collected using structured questionnaires and analyzed through the Structural Equation Model (SEM) using Smart PLS to examine both direct and indirect effects among variables.

Results: The results show that Safety Culture significantly affects Patient Safety ($t = 2.657$, $p < 0.05$), significantly influences Work Training ($t = 14.962$, $p < 0.05$), and Work Training significantly affects Patient Safety ($t = 7.554$, $p < 0.05$). Moreover, Work Training mediates the relationship between Safety Culture and Patient Safety ($t = 6.775$, $p < 0.05$).

Conclusion: The findings confirm that Safety Culture directly and indirectly enhances Patient Safety through Work Training. A strong safety culture and ongoing professional development are essential for maintaining patient safety and comfort.

Limitations: This study was limited to one hospital with a small sample, which may affect generalizability. Self-reported data may also introduce bias.

Contribution: The research highlights the mediating role of Work Training between Safety Culture and Patient Safety, providing insights for hospital management to develop effective safety and training strategies.

Keywords: *Job Training, Patient Safety, Safety Culture*

How to Cite: Lonatrista, M. A., & Tj, H. W. (2025). Workplace training mediates safety culture towards patient safety. *Global Academy of Business Studies*, 2(2), 101-116.

1. Introduction

Safety is a system that makes patient care safer, including risk assessment, identification, and management of patient risks, reporting and analysis of incidents, the ability to learn from incidents and their follow-up, and implementation of solutions to minimize the emergence of risks and prevent injuries caused by errors resulting from carrying out an action or not taking action that should be taken. Maintenance safety, quality, and best health are right regulated patients in Law no. 44 of 2009 concerning House Hospital. Patient safety must be understood by all hospital staff and implemented as part of work culture. All components, including security guards and cleaning staff, administration, nurses, and doctors, must understand the role of patient safety. Safety of patients is the main objective of the House Sick (Hendri & Melsandi, 2020).

Service health especially in hospitals, prioritizing the fundamental principle of “do no harm” for all stakeholders (Luxford, 2016; Ngaliman, Catrayasa, & Khairil, 2025). The Aegroti Salus Lex Suprema-salvation patient has the highest law, which is mandatory for all order service health (Jabbarpour, 2017).

A safety patient is a system that makes care patients safer, covering assessment risk, identifying and managing risk patients, reporting and analysis incident, ability study from incidents and actions he continued, and implementation solution to minimize emergence risk and prevent the occurrence of injuries caused by mistakes, consequences carry out something action, or no action that should be taken. Safe patients become the main objective and cultural work for services in hospitals. Safety patients do not provide adequate answers regarding management facility service health, energy health, and patients (Susanti, Reniati, & Altin, 2025).

A hospital safety culture is a collaborative environment in which physicians respect one another, leaders encourage effective teamwork and create a sense of psychological safety, and team members learn from patient safety incidents. Health professionals recognize the limitations of humans working within a complex system and the need for learning and effort to encourage improvement. Safety culture is also the result of the values, attitudes, perceptions, competencies, and behavioral patterns of individuals and groups that determine their commitment to and ability to manage health and safety services. Culture safety plays a significant role in lower-error medicine and improves productivity (Azyabi, Karwowski, Hancock, Wan, & Elshennawy, 2022). Support comprehensive from leadership House Sick For ensure safety on site work, able report problem safety on site Work without consequence negative, and rating comprehensive on safety work is very influential to culture safety work at the hospital (Hesgrave, Zebrak, Yount, Sorra, & Ginsberg, 2024).

A hospital is an institution's service health that organizes service health individuals in a plenary session that provides service care hospitalization, care roads, and emergency emergencies. A general Hospital is a hospital that provides health services for all fields and types of diseases. Hospital special is a hospital that provides services mainly in one field or one type of disease, based on discipline science, group age, organ, or type diseases. The types of Special Hospitals include Special Hospitals for Mothers and Children, Heart, Cancer, Orthopedics. Lungs, mental health, leprosy, eyes, drug addiction, stroke, disease infection, childbirth, teeth and mouth, medical rehabilitation, ear nose throat, surgery, kidney, skin, and genitals. Based on facilities and capabilities and services, Special Hospitals are classified as Special Hospital classes A, B, and C. Special Surgical Hospital Class A is a hospital that has complete specialist and subspecialist services (Hardana, 2024).

The CAP Special Surgery Hospital (RSKB) is a Type A hospital with an accreditation level plenary that has the highest level of accreditation. The RSKB CAP is an international standard hospital that has been operating for more than 10 years with parent companies that have been operating since 1996. Currently, the RSKB CAP is expanding with the development of new buildings owing to increasing market demand. According to the CEO of RSKB CAP, Dr. Gabrielly Zwitveysie, MARS, in the era of globalization, competition has become tighter. A safe Patient is a differentiation or superiority competition that can increase hospital *revenue*. Patient safety is an important factor for Quality Services experienced by patients (Vianney & Nurofik, 2024). Quality service has a significant influence on satisfaction with patient satisfaction and a direct influence on loyalty patients, and there is also no direct quality service to loyalty patients mediated by patient satisfaction. Therefore, the safety of patients is an important issue for investigation because it influences loyalty (Nia, Fatanilam, Simahatie, & Chadafi, 2024).

Trusted and satisfied patients will recommend health services to others. (Sam et al., n.d.). Therefore, Staff and Medical Personnel were sued for giving excellent work attitudes beyond expectations from organizational work. However, a sadly incident error handling medical still often occurs in service health. For example, there are errors in medicine. Error treatment: This percentage is more than a quarter of the total safety of dangerous patients who should be prevented (Hodkinson et al., 2020). Error medicine, also known as a serious health problem, is the third leading cause of death in America (Rodziewicz et al., 2024). At the RSKB CAP from 2022 to 2024, there is a significant improvement in reporting related incidents. Indicator Safety Patient covering Incident Near miss (KNC)—near miss, no *harm*, adverse events (KTD), *Condition* Potential Injury Significant (KPCS), and sentinel (Putra & Febriansyah, 2020; Zumaroh & Kusumawati, 2024).

An Incident Near Miss (NMI) is an unresolved occurrence until patient exposure. Non-injury events (NON-INFECTIVE EVENTS) are incidents that have occurred in patients, but no injury has occurred. An adverse event (KTD) is an incident that results in injury to a patient. Condition Potential Injury (KPC) is a very potential condition for causing injury, but it has not yet occurred. Sentinel events are something Unexpected Events (KTD) that result death, injury permanent, or injury temporary and necessary weight intervention For maintain life, good physique and psychic, which is not related with journey disease or condition patients. (Ministry of Health Regulation No. 11, 2017). Sentinels at RSKB CAP from January 2022 to March 2025 sorted the most to the least as treatment error, error misdiagnosis, wrong assessment, unexpected death or sudden death, and intraoperative or intraprocedural complications. From the description above, it gives rise to a feeling of curiosity know from researchers about how much The Influence of Safety Culture on Patient Safety in Special Surgery Hospitals CAP, so that title from study This is “Influence Culture Safety to Safety Patient-Mediated Job Training at CAP Special Surgery Hospital”.

2. Literature review

2.1. Theoretical Review

2.1.1. Culture Safety

Cultural Safety is everything that is done or owned by an organization in reach (Sexton et al., 2021). Culture safety is core values and resulting behaviors from commitment collective and sustainable by the leadership organizations, managers, and workers maintenance health For more prioritize safety compared to objective other (Noort, Reader, Shorrock, & Kirwan, 2016). In context service health, culture safety patient is aspect crucial in service health that aims For prevent error medical and protective patient from injuries that can avoided. Perception culture safety patients have an influence on the perception of safety patients in terms of overall and frequency of reporting events (Azyabi et al., 2022). Mechanisms that increase climate safety House Sick are collaboration interprofessional mediating connections between learning and improvement organizations with the involvement of patients and their families (Ishii, Fujitani, & Matsushita, 2024). Aspects that need to be considered in improving the culture safety of patients are the lack of staff and long working hours. Hospital management also needs to provide adequate power to increase patient safety (Seshoka, 2023).

2.1.2. Safety Patient

Safety Patient is something the system that makes care patient more safe, covering assessment risk, identification and management risk patients, reporting and analysis incident, ability Study from incidents and actions he continued, and implementation solution (Nabilla & Wibisono, 2025). To minimize emergence risk and prevent the occurrence of injuries caused by mistakes, consequences carry out something action or no action that should be taken. Law no. 17 of 2023 article 173 states that every facility service health must organize service quality health and prioritize patient safety. Every facility service health facility must apply standard safety patients through identification and management risk, analysis and reporting, and solution problems in preventing and handling dangerous incident safety patients (Pradana, Sudrajat, Nauli, & Yuliansyah, 2021).

How to build system maintenance for better health safety to support safe patients is to increase availability of source power, provide training for safety in ongoing patient care, improve system communication, and foster environment supportive management (Atinifu, Getaneh, & Setotaw, 2024). Working hours are the reason for most errors in service health (Atwa et al., 2024). The strongest predictor of patient safety is adequacy staff, followed by support management (Lee & Dahinten, 2020). Ability power health collaborates and communicates important in the context of patient safety because pressure time and resources limit hospital capacity (Berg, Werner, Knutsen, & Johannessen, 2024). All staff, administrations, and managers play a role in ensuring patient safety (Lee & Dahinten, 2020). Factors that also influence patient safety are House Sick’s most frequent center, showing more positive perceptions of environmental practice, quality care, and safety. Meanwhile, the House Sick District often shows the most negative perceptions. The environment is most correlated with nursing quality and patient outcomes (Tenza, Blignaut, Ellis, & Coetzee, 2024).

2.1.3. Training Work

Training and development can be defined as group actions that make member A's organization in a way constant is in condition Ready For role moment this and the future within the organization and its environment. From the perspective of psychology, training is the process of forming and modifying attitudes so that one can adapt to the work done. Formation and modification were the focus of the training process. Training is equip participant training with information, knowledge and expertise that provide they competence For do it his job. Training develops and improves ability moments and prepares jobs at a higher level in the future (Tame, Marlissa, & Ngutra, 2025).

Leading companies in developed countries use a lot of money for training, sometimes up to six times from employees' wages. This company focuses on training sustainability for the largest proportion of employees. Training is an important component of managerial positions and fundamental obligation for head administration. Head administration is responsible for developing ability employees and things, which can be achieved through method collaboration between leaders and coaches within organizations that can help leaders in planning a training program. Training is very important For increase performance and efficiency individuals also improve and develop knowledge, skills and abilities employees and improve capacity For do assignments and repairs attitude For produce better performance Good. This is a compilation of the research conducted by Atwa et al. (2024).

2.2. Conceptual Framework

Safety of patients will increase when training work is enhanced, and culture safety is enhanced at CAP Special Surgery Hospital. Thus, the model is as follows:

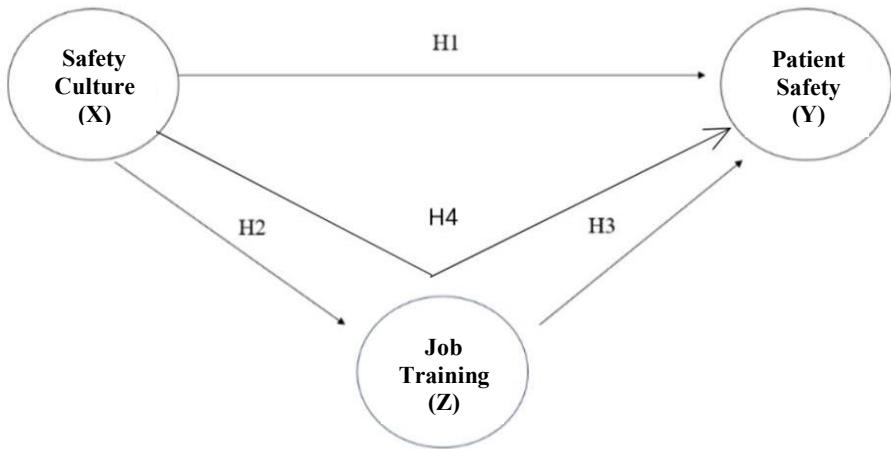


Figure 1. Concept Model Study

2.3. Development Hypothesis

2.3.1. Influence Culture Safety to Safety Patient

With background behind many incidents incident at the Hospital that caused by Because culture safety that still exists low , research from Azyabi et al. (2022) show that culture safety influential significant to safety patients at home sick in America. Similar to findings from Seshoka (2023), culture safety in the care unit critical condition at Tshwane Hospital in Gauteng province is significant for patient safety. Similar to findings from Atinifu et al. (2024), which showed that culture safety at Bahir Dar City General Hospital, Northwestern Ethiopia is affected significantly by patient safety. Similar to the invention of Berg et al. (2024), culture safety influences safety in patients whose condition worsens significantly, in tune with the invention from Tenza et al. (2024), which shows that culture safety influences the safety of patients at four levels of hospitals in South Africa. Based on results findings the so hypothesis First For study This is:

H1: culture Safety Influential Positive to Safety Patient

2.3.2. Influence Culture Safety to Training Work

Low cultural safety is affected by the lack of training work. Research conducted by Alharbi and Aloyuni (2023) shows that cultural safety has a significant influence on training work. Based on these results, the second hypothesis is as follows:

H2: Culture Safety Influential Positive to Training Work

2.3.3. Influence Training Work to Safety Patient

Training Work influences the decline of incident or positively influences patient safety. Research that conducted by Faridi, Farsi, Rajai, Kalyani, and Fournier (2025) show that training through electronic multimedia in a way effective and significant influential positive to safety patients. Likewise, the discovery from Campione and Liu (2024) shows that training recording records medical electronic influence positive to safety patients in a way significant. Therefore that hypothesis third in study This is as follows:

H3: Training Work Influential Positive to Safety Patient

2.3.4. Influence Culture Safety to Safety Patient Mediated by Training Work

Training Work can mediate culture safety for patients. Atwa et al. (2024) state that culture safety influential positive in a way significant to safety patient mediated by training Jeddah Hospital, Saudi Arabia. Similarly, Lee and Dahinten (2020) state that cultural safety has a positive influence on patient safety mediated by training work. Based on this study, the fourth hypothesis is as follows:

H4: Culture Safety has a Positive Effect on Safety Patient Mediated by Training Work

3. Research methods

3.1. Objects and Subjects Study

This research focuses on the problem of patient safety influenced by cultural safety and mediated safety work. Participants were nurses who worked at the RSKB CAP. The RSKB CAP is a House Sick type A in East Jakarta, which has uniqueness alone with its specialty in service completion, and moderate surgery develops rapidly with stage expansion in the form of new developments. Therefore, researchers are interested in creating nurses who work at the RSKB CAP as a research subject.

3.2. Population and Sample

3.2.1. Population

Study population: There were 113 nurses in the RSKB CAP. With composition nurses in *the Intensive Care Unit (ICU)* as many as 12 people, Operating Room nurses as many as 15 people, nurses at the outpatient clinic road as many as 28 people, nurses Installation Emergency Emergency emergency 16 people, and nurses in the room care stay as many as 42 people.

3.2.2. Sample

The determination of sample size is based on (Hair, Ringle, & Sarstedt, 2013), which states that for populations whose size is not yet clearly known, it is recommended to use a sample size of 5-10 of the number of indicators used in the study. In this study, there were 20 indicators; therefore, the minimum sample size used was $5 \times 20 = 100$ respondents.

3.3. Variables Operational

Table 1. Variables Operational

Variables	Definition	Indicator	Scale Measurement
Culture safety	Culture Safety is core values and resulting behaviors from commitment collective and sustainable by the leadership organizations, managers, and workers maintenance health	1. Teamwork within units and between units. 2. Arrangement personnel. 3. Organization learners and improvement sustainable.	Ordinal

	For more prioritize safety compared to objective other (American Nurses Association, 2016).	4. Response No punish to error. 5. Supervisor/ manager expectations and actions in promote safety patient. 6. Communication and feedback come back about incident. 7. Openness communication. <u>Frequency reporting incident</u>	
Training Work	Training Work is overall activity For give, gain, increase, as well develop competence work, productivity, discipline, attitude, and ethos work at the level skills and expertise certain in accordance with levels and qualifications position or wor (Ministry of Manpower, 2023).	1. Ensure equipment medical functioning normally. 2. Understanding the five moments wash hand. 3. Comply use tool protector self (PPE). 4. Understand management risk safety Work. 5. Understand management countermeasures disaster. Able to do Basic Life Support (BHD) in the form of resuscitation heart lungs	Ordinal
Safety Patient	Safety Patient is something the system that makes care patient more safe, covering assessment risk, identification and management risk patients, reporting and analysis incident, ability Study from incidents and actions he continued, and implementation solution For minimize emergence risk and prevention occurrence injuries caused by mistakes consequence carry out something action or No take the action that should be taken taken (RI MINISTER OF HEALTH REGULATION no. 1691/ MENKES/ PER/ VIII/ 2011)	1. Identification of Patients Correctly 2. Identification of Patients Correctly 3. Precautions for High Alert Medications 4. Ensure Correct Location, Correct Procedure and Correct Patient for Surgery 5. Reducing the Risk of Healthcare-Associated Infections Reduction risk patient fall	Ordinal

Source: Researcher-processed data (2025)

3.4. Data Collection Techniques

Data collection techniques using Google Forms included a questionnaire. The data source used in this study is primary data, namely, data obtained and collected directly from the research object by the individual or company conducting the research (without intermediaries). Primary data is a data source that directly provides data to the data collector. The instrument used in this study was a questionnaire. A questionnaire is a summary of a list of written questions that have been selected and formulated beforehand and then submitted to the respondents. Various alternative choices are created within the list of questions that can be clearly defined.

The Likert scale (1=very disagree to 5 = strongly agree) was used by the researcher to formulate statements or questions to be given to respondents. Based on the Likert scale, all variables to be

measured were described as variable indicators, which were then used as arguments in compiling the instrument items in the form of questions. This study was conducted by submitting questions in the form of a questionnaire to nurses at the CA Hospital using *Google Forms*. This study was conducted between June and July 2025. Respondents were asked to answer questions prepared by the researcher related to nursing culture. Safety, patient safety, and training work

3.5. Data Analysis Techniques

In this study, the researchers used a *Structural Equation Modeling* (SEM) approach, based on *partial least squares* (PLS) or PLS-SEM using Smart PLS 7.0. PLS is a multivariate method that has the advantage of executing various factors, such as response variables to explanatory variables, and is used to determine whether there is a relationship between two or more latent variables (*prediction*), whereas SEM is used to cover the weaknesses of the regression method.

4. Result and discussion

4.1. Characteristics Respondents

Characteristics respondents are reflected from the background background owned by the respondents who were used as *samples* in some research and provide characteristics that can be used as differentiators between fellow respondents. The respondents involved in this study were nurses at CAP Special Surgery Hospital, described based on the type of gender, age, level of education, and length of service. Research: This involved respondents in data collection through questionnaires. Researchers discuss the number of respondents involved based on sex type. The respondents are shown in Table 2.

Table 2. Characteristics Respondents by Gender

Characteristics	Frequency	Percentage
Gender		
Man	16	16%
Woman	84	84%
Total	100	100%
Age		
13-28 years	24	24%
29-44 years	73	73%
45-60 years	3	3%
Total	100	100%
Education		
S1	100	100%
Total	100	100%
Years of service		
0-10 years	90	90%
11-20 years	9	9%
21-30 years old	0	0%
31-40 years	1	1%
Total	100	100%
Department		
Neonatal Intensive Care Unit and Nursery	15	15%
Intensive Care Unit	13	13%
Outpatient Department	28	28%
Inpatient Department	24	24%
Emergency Room	7	7%
Operating Room	13	13%
Total	100	100%

Source: Researcher Processed Data (2025)

4.2. Analysis Statistics

4.2.1. Measurement Model Analysis (Outer Model)

Analysis *outer model* is done to prove that measurements used in study whether already screen or not made into tool measure (valid and reliable) in research. A number of tests have been conducted on the analysis of this *outer model*, with validity tests that include Validity Convergent Validity such as *Loading Factor*, *Average Variance Extracted (AVE)*, and Validity Discriminant (*Discriminant Validity*) such as *Cross Loading* and Reliability Test like *Composite Reliability*, and *Cronbach's Alpha*.

4.2.1.1. Validity Test Convergent

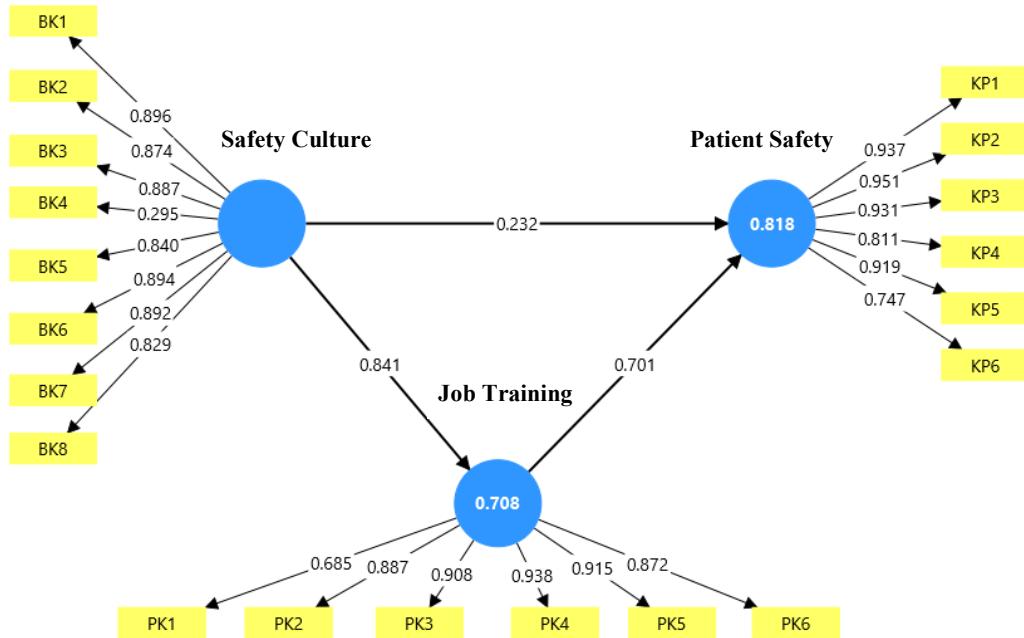


Figure 2. Construction Model1
Source: Processed Data SmartPLS (2025)

Measurement constructs Culture Safety through eight indicators namely BK1, BK2, BK3, BK4, BK5, BK6, BK7, BK8. Measurement constructs Safety Patient through six indicators: KP1, KP2, KP3, KP4, KP5, and KP6. Measurement construct training works through six indicators: PK1, PK2, PK3, PK4, PK5, and PK6. This study uses reflective research models in which every indicator is reflected from latent variables.

Table 3. Loading Factor Values

Variables	Indicator	Loading Factor	Information
Culture Safety	BK1	0.896	Valid
	BK2	0.874	Valid
	BK3	0.887	Valid
	BK4	0.295	Invalid
	BK5	0.840	Valid
	BK6	0.894	Valid
	BK7	0.892	Valid
	BK8	0.829	Valid
Safety Patient	KP1	0.937	Valid
	KP2	0.951	Valid
	KP3	0.931	Valid
	KP4	0.811	Valid
	KP5	0.919	Valid
	KP6	0.747	Valid

Training Work	PK1	0.685	Invalid
	PK2	0.887	Valid
	PK3	0.908	Valid
	PK4	0.938	Valid
	PK5	0.915	Valid
	PK6	0.872	Valid

Source: Processed Data SmartPLS (2025)

a) Average Variance Extracted (AVE)

Besides being analyzed from the loading factor value, convergent validity can also be analyzed from the *Average Variance Extracted* (AVE). The larger the AVE value formed, the more its power is also high in explaining the value of all indicators that measure the latent construct. The construct value is declared valid and shows good convergence for size validity if the AVE value of each indicator is >0.5 . Following This is the AVE value will be used for the measure validity construct.

Table 4. Average Variance Extracted

Variables	Average variance extracted (AVE)	Information
Culture Safety	0.764	Valid
Safety Patient	0.785	Valid
Training Work	0.829	Valid

Source: Processed Data SmartPLS (2025)

Table 4 shows the AVE values for each construct, which exceed 0.5, indicating that No There problem validity converges on the tested model in this study.

4.2.1.2. Validity Test Discriminant (*Discriminant Validity*)

Validity test discriminant with a see mark from *cross-loading*. Size *cross-loading* was obtained by comparing the correlation between the indicator and construct from one block with those in the other blocks. An indicator can say to be valid and fulfills condition validity discriminant if own mark *loading factor* more big or highest on the intended construct If compared to to indicators on the construct other. Following this are the validity test results based on the mark main *loading factor* to mark *the cross-loading factor* with the construct other.

Table 5. Cross Loadings Table

Indicator	Culture Safety	Safety Patient	Training Work	Information
BK1	0.9	0.791	0.781	Valid
BK2	0.873	0.71	0.677	Valid
BK3	0.886	0.693	0.684	Valid
BK5	0.839	0.723	0.777	Valid
BK6	0.895	0.719	0.701	Valid
BK7	0.894	0.733	0.726	Valid
BK8	0.828	0.674	0.705	Valid
KP1	0.742	0.938	0.838	Valid
KP2	0.758	0.952	0.846	Valid
KP3	0.76	0.931	0.871	Valid
KP4	0.746	0.809	0.722	Valid
KP5	0.783	0.919	0.859	Valid
KP6	0.587	0.747	0.639	Valid
PK2	0.731	0.86	0.906	Valid
PK3	0.74	0.847	0.926	Valid
PK4	0.765	0.834	0.946	Valid
PK5	0.764	0.82	0.911	Valid
PK6	0.77	0.75	0.863	Valid

Source: Processed Data SmartPLS (2025)

In Table 5, based on Validity Test Discriminant *Cross Loading*, obtained the loading factor value of the indicator the variables to mark the variable *loading factor* his Alone is larger than the variable loading factor value others (see the table given) color). This shows that indicators in the questionnaire study have a close relationship to the variables alone, which means that indicators and variables that are valid and have been used for precise measurement in this study.

4.2.1.3. Reliability Test Instrument

The next step is to prove that there are issues related to measurement, so the evaluation stage is final in the *outer model*, that is, testing unidimensionality from the model that includes *composite reliability* and *Cronbach's alpha*. The reliability test is a test for the level of consistency and reliability of a tool measuring instrument used in research, such as *Cronbach's Alpha* and *Composite Reliability*.

a) Composite Reliability

Composite Reliability was used to measure the reliability indicators of a construct. An instrument has high reliability if its own *composite reliability* is >0.7 , although For value of 0.6 still be accepted. The following is a mark from the results analysis of *composite reliability*.

Table 6. Composite Reliability Values

Variables	Composite reliability (rho c)	Information
Culture Safety	0.958	Reliable
Safety Patient	0.956	Reliable
Training Work	0.96	Reliable

Source: Processed Data SmartPLS (2025)

In Table 6, the results indicate that the composite reliability of all constructs is >0.7 , indicating that all constructs have good reliability and no problem reliability or are unidimensional in the model formed.

b) Cronbach's Alpha

The reliability test can be strengthened using *Cronbach's alpha*. Because it is said to be reliable, *Cronbach's alpha* from all constructs is expected to be >0.7 . The following is a mark from the analysis of *Cronbach's alpha*:

Table 7. Cronbach's Alpha

Variables	Cronbach's alpha	Information
Culture Safety	0.948	Reliable
Safety Patient	0.944	Reliable
Training Work	0.948	Reliable

Source: Processed Data SmartPLS (2025)

Table 7 shows the *Cronbach's alpha* for all very good constructs, namely >0.7 , meaning that all constructs have good reliability and no problem reliability or unidimensionality in the model formed. In conclusion, for the analysis of the *outer model* in this research, all indicators have the validity and reliability of the rules so that they can be continued with the analysis *inner model*.

4.3. Structural Model Analysis (Inner Model)

Structural Model Analysis (*Inner Model*) was carried out to test the connection between exogenous and endogenous variables and the extent to which the model was used for prediction. There are several testing on the *Inner Model* analysis, namely the *R-Square* test (R^2), *Chi Square* (Q -*Square*/ Q^2) and *Model Fit*

4.3.1. Coefficient Test Determination of R Square (R^2)

Table 8. R Square (R^2)

Dependent var.	R-square	Information
Safety Patient	0.836	strong
Training Work	0.685	strong

Source: Processed Data SmartPLS (2025)

This R-Square test measures how good latent variables are in the model and can explain latent variability variables independently. The R^2 value indicates the overall strength of the predictive model. Coefficient value determination of R-Square (R^2) is expected between 0 and 1, and if There is *R-Square* value that is close to 1, matter. This shows that the exogenous construct provides almost all the information required for predicting variants in the endogenous construct. *R-Square* value of 0.67 means as a strong model parameter, the R-Square value of 0.33 means as a moderate model parameter, and the R-squared value of 0.19 means as a weak model parameter (Ghozali & Latan, 2015).

Based on the results analysis, The R-Square value obtained was 0.836 for the Safety Patient variables, showing that 83.6% of the variation in the variable can be explained by variables independent in the model, while the remaining 16.4% is influenced by other factors outside the model, so that the connection between variables is independent and safe Patient can be considered very strong. While The R-squared value of 0.685 for Training Work show that 68.5 % of the variation in the variable This can be explained by variables independent in the model, with 31.5% influenced by factors external. This value shows a very strong relationship, meaning that the model is able to explain part of the big factor affecting patient safety , although there is still an influence from outside the model.

4.3.2. Relevance Test Prediction Chi Square (Q^2)

Another test is the *Chi Square* Test (Q^2) to see the connection between exogenous and endogenous variables to see how good the model used for prediction, where the taller the *Chi Square* (Q^2), the better the model used. The calculation mark *Chi Square* (Q^2) was as follows:

$$\begin{aligned}
 Q^2 &= Q_2 - 1 - (1 - R_1^2)(1 - R_2^2) \\
 &= 1 - (1 - 0.836)(1 - 0.685) \\
 &= 1 - (0.164)(0.315) \\
 &= 1 - 0.05166 \\
 &= 0.94834
 \end{aligned}$$

Thus, we can interpret that endogenous (dependent) variables, namely patient safety influenced by exogenous (independent) variables, namely Culture Safety, by 94% and 6%, is influenced by other factors outside the research model. These results prove that the model has *predictive relevance*.

4.3.3. Model Fit Test

Model testing was performed with the results of SmartPLS output estimation version 4.0, and compared with criteria such as the explanation in the table below.

Table 9. Model Fit Test Results

Parameter	Rule of Thumb	Parameter Values	Information
SRMR	More small from 0.10	0.049	Fit
d ULS	> 0.05	0.409	Fit
d G	> 0.05	0.627	Fit
Chi-square	χ^2 statistics $\geq \chi^2$ table	323,127 \geq 27,587	Fit
NFI	Approach value 1	0.859	Fit

Source: Smart PLS-Model Fit Test

Based on this model fit test table, the NFI values of 0.859 Normed Fit Index (NFI) requirements in SEM-PLS are between 0 and 1. The NFI value NFI (*Normally Fit Index*) is 0.859, which is close to the

ideal value of 1, indicating that the model has sufficient suitability, although not optimal. NFI 0.859 if percentage becomes 85.94% ($0.859 \times 100\% = 85.94\%$), which means the model used in study this is 85.94% correct and still can be accepted to describe the data.

4.4. Hypothesis Testing

In hypothesis testing, can be analyzed based on the t-statistic value and value probability or significance (*p-value*), where the values can be seen from the bootstrapping results. Hypothesis testing will be performed with direct analysis influence and influence no direct (mediation).

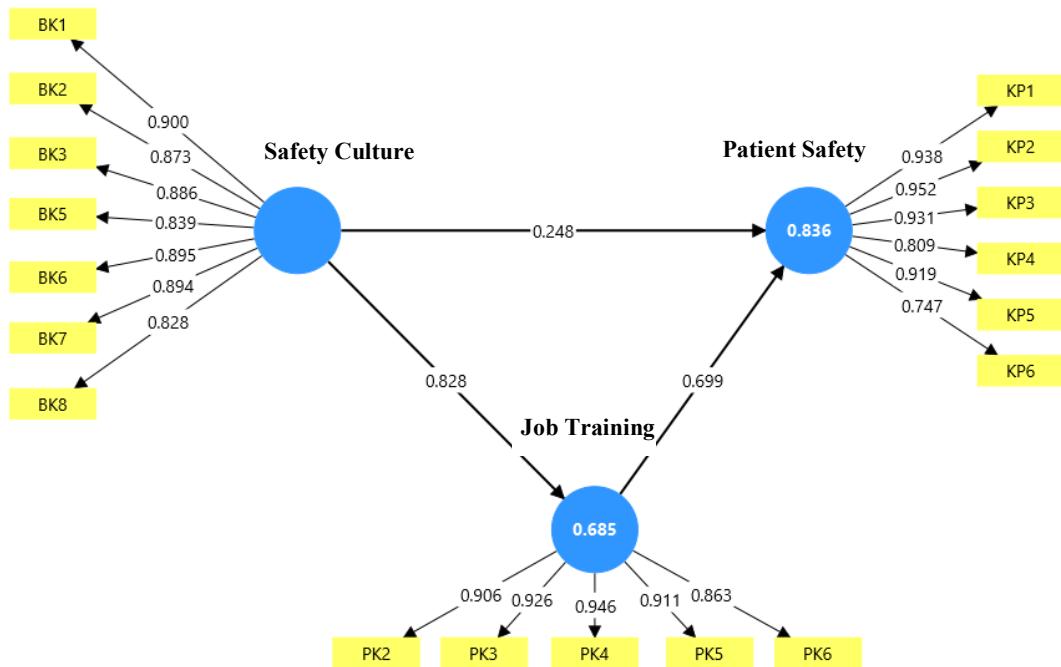


Figure 3. Bootstrapping Construct Model
Source: Processed Data SmartPLS (2025)

4.4.1. Influence Direct Effect

Hypothesis will be accepted if t-statistic value >1.96 and level significance *p-value* <0.05 (5%) with a positive coefficient. The following is a mark from the influence of the direct bootstrapping results.

Table 10. Path Coefficients Values

Path Coefficient	Original sample (O)	Sample mean (M)	Standard deviation (STDEV)	T statistics	P values	Note
Culture Safety -> Safety Patient	0.248	0.246	0.093	2,657	0.004	Accepted
Culture Safety -> Training Work	0.828	0.818	0.056	14,692	0.000	Accepted
Training Work -> Safety Patient	0.699	0.698	0.093	7,554	0.000	Accepted

Source: SmartPLS Path Coefficient Data Processing Results (2025)

The path Coefficient table above shows the significance and relationship influence from exogenous (*independent*) to endogenous (*dependent*) variables directly. In case this hypothesis is accepted if T-Statistic value > 1.96 or P Value <0.05 , whereas variables exogenous (*independent*) influence positive to endogenous (*dependent*) variables if the *Original Sample* (Coefficient Regression) is positive (>0). There are 3 hypotheses tested in this study:

- a. Hypothesis 1
Culture Safety significant and influential positive to Safety Patient Because The T-Statistic value is 2.657 and the P Value is $0.004 < 0.05$ and the *Original Sample* or magnitude mark coefficient Culture Safety to Safety Patient $0.248 > 0$ then hypothesis First in study This can accepted
- b. Hypothesis 2
In Table 10, the magnitude mark coefficient For Culture Safety to Training Work of $0.828 > 0$ indicates that positive culture safety has an influence on job training. Culture Safety has a significant and influential positive influence on Training Work Because $T\text{-statistic } 14.692 > 1.96$ and $P\text{-Value } 0 < 0.05$. So the hypothesis second in study This can accepted
- c. Hypothesis 3
Training has a significant and positive influence on patient safety. In Table 10, the value coefficient for influence work and patient safety of 0.699 indicates that there is an influence of positive training work on patient safety. $T\text{-Statistic } 7.554 > 1.96$ and $P\text{-Value } 0 < 0.05$ indicate that the influence of Training Work on patient safety is significant, so that there is sufficient proof for state training work to be significant and positive for patient safety. Thus, the third hypothesis in this study can be accepted.
- d. Hypothesis 4: Culture Safety positively influences patient safety mediated by Job Training. Influence No direct Culture Safety to Safety Patients mediated by Training Work is significant because the T Statistic $6.755 > 1.96$ and p-value $0.00 < 0.05$, then hypothesis fourth in study . This means that effective cultural safety can increase Training Work, which in turn contributes to the safety of patients. Good cultural safety can push employees to truly follow Job Training, so that the impact is positive to the Safety Patients. Because of the direct relationship between Culture Safety and Security Patient significance, Training Work plays a role as *partial mediation*, which means that part influences culture safety to safety patients through Job Training.

4.4.2. Indirect Effect

The role of the mediator can also be seen from the significance effect No directly, following This is marked from the influence No direct results *bootstrapping*.

Table 12. Indirect Influence Value (Mediation)

Path Coefficient	Original sample (O)	Sample mean (M)	Standard deviation (STDEV)	T statistics (O/STDEV)	P values	Note
Culture Safety ->						
Training Work ->	0.578	0.571	0.086	6.755	0.00	Accepted
Safety Patient						

Source : SmartPLS Data Processing Results (2025)

This Specific Indirect Effects table shows the significance and relationship influence from exogenous (independent) to endogenous (dependent) variables. Connection influence between variables exogenous (independent) to endogenous (dependent) variables are seen from T-Statistic Test value when the value is > 1.96 or $P\text{-Value } < 0.05$ then connection Natara variables exogenous (independent) to endogenous (dependent) variables are significant and the Original Sample value (Coefficient Regression) has positive influence when the value is above 0 or positive so from the table above can concluded as following:

5. Conclusions

5.1. Conclusion

Based on the data analysis, findings, and discussions outlined in the previous section, the following conclusions can be drawn:

- a. Culture Safety Significant and Influential Positive to Safety Patients. This means that when Culture Safety the more Good in a hospital, the number of safety patients increases, whereas If Culture Safety No rooted in the culture of a hospital, then the number of safety patients decreases.

- b. Cultural Safety significantly and positively influences Training Work. Meaning for better cultural safety in hospitals, there is a significant and positive influence on Training Work given to all Nurses at the Hospital.
- c. Training has a significant and positive influence on patient safety. This means that Training Work given to Hospital Nurses can increase the number of safe patients in hospitals.
- d. Cultural Safety is significant and has a positive impact on patient safety mediated by Job Training. This means that for, increases. Training and cultural safety must also be improved formerly. This can strengthen Training Work in the Hospital so that the result will influence in a way that is not direct to patient safety.

5.2. Suggestions

The following are suggestions given based on research that has been conducted, namely:

5.2.1. Theoretical Suggestions

- a. For study interested continuation develop study This recommended For develop other variables that relate with Safety Patients who can implications straight to Safety Patients, in addition development outside variables Culture Occupational Safety and Training, recommended For add variables about burden work, level knowledge and motivation work, and expected researchers furthermore can do study Safety Patients in hospitals other than CAP Special Surgery Hospital.
- b. Limitations of the study: This is not yet able to disclose all factors affecting Training Work to Safety Patient. The coefficient value from training only amounted to 68.5%, which can be explained in this study. Likewise, the coefficient determination from Safety Patient only amounted to 83.6%, which can be explained by this study. This means that 31.5% of the training variables were used. Work and 16.4% of the Safety Patient variables, which can be explained by other variables outside the research; therefore, future researchers are expected to be able to explore these variables.
- c. The study population included nurses working at a special hospital. It is hoped that further research can expand the scope of the area while considering the population, and it is also recommended to increase the number of samples in the study so that it can better represent the actual situation.
- d. This research was conducted Using *Google Forms* to collect questionnaire data is recommended for research. Furthermore, respondents can be contacted directly so that they can fill out the questionnaire more accurately.

5.2.2. Practical Suggestions

- a. Culture Safety has a positive and significant impact on patient safety, and it is recommended that Hospital Management maintain good safety in hospitals. Good cultural safety can be exemplified from Top Management with the method of doing something in accordance with the *Standard Operating Procedure (SOP)* and not punishing nurses when reporting incidents, but protecting, evaluating, and improving nurses' errors at the hospital.
- b. Training has a significant influence on the Safety Patients. Therefore, training must be regularly provided to all nurses to improve the Safety Patients at the hospital.

References

Alharbi, K. M. S., & Aloyuni, S. A. S. (2023). The Importance of Training and Development of employees in improving the quality of health services. *International Journal of Health Sciences*, 7(1), 2190-2201. doi:<https://doi.org/10.53730/ijhs.v7nS1.14473>

Atinifu, D., Getaneh, G., & Setotaw, G. (2024). Assessment of Patient Safety Culture and Associated Factors among Healthcare Professionals in Public Hospitals of Bahir Dar City, Northwest Ethiopia: A Mixed-Methods Study. *Plos One*, 19(11), 1-17. doi:<https://doi.org/10.1371/journal.pone.0313321>

Atwa, H., Alfadani, A., Damanhori, J., Seifalyazal, M., Shehata, M., & Abdel Nasser, A. (2024). Healthcare Practitioners' Attitudes Toward Patient Safety in Hospital Settings in Jeddah, Kingdom of Saudi Arabia. *Arab Gulf Journal of Scientific Research*, 42(3), 1090-1100. doi:<https://doi.org/10.1108/AGJSR-03-2023-0113>

Azyabi, A., Karwowski, W., Hancock, P., Wan, T. T., & Elshennawy, A. (2022). Assessing Patient Safety Culture in United States Hospitals. *International Journal of Environmental Research and Public Health*, 19(4), 1-15. doi:<https://doi.org/10.3390/ijerph19042353>

Berg, A. M. N., Werner, A., Knutsen, I. R., & Johannessen, A.-K. (2024). Hospital Nurses and Physicians' Experiences Practicing Patient Safety Work to Recognize Deteriorating Patients: A Qualitative Study. *BMC Health Services Research*, 24(1), 1-14. doi:<https://doi.org/10.1186/s12913-024-11908-x>

Campione, J., & Liu, H. (2024). Perceptions of Hospital Electronic Health Record (EHR) Training, Support, and Patient Safety by Staff Position and Tenure. *BMC Health Services Research*, 24(1), 1-11. doi:<https://doi.org/10.1186/s12913-024-11322-3>

Faridi, S., Farsi, Z., Rajai, N., Kalyani, M. N., & Fournier, A. J. (2025). Effectiveness of Multimedia Electronic Training on the Nurses' Adherence to Patient Safety Principles: A Randomized Controlled Trial. *Health Science Reports*, 8(4), 1-10. doi:<https://doi.org/10.1002/hsr2.70621>

Ghozali, I., & Latan, H. (2015). *Partial Least Squares Konsep Teknik dan Aplikasi dengan Program Smart PLS 3.0*. Semarang: Badan Penerbit Undip.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. *Long Range Planning*, 46(1-2), 1-12. doi:<https://doi.org/10.1016/j.lrp.2013.01.001>

Hardana, A. (2024). Analisis Hubungan Pertumbuhan Ekonomi dengan Kemiskinan dan Belanja Modal Pemerintah Daerah, Penyerapan Tenaga Kerja, dan Indeks Pembangunan Manusia. *Studi Ekonomi dan Kebijakan Publik*, 2(2), 59-68. doi:<https://doi.org/10.35912/sekp.v2i2.2344>

Hendri, & Melsandi, N. (2020). Pengaruh Pengawasan dan Kepemimpinan Terhadap Disiplin Kerja Pegawai Pada Dinas Pekerjaan Umum dan Perumahan Rakyat Kabupaten Lampung Selatan. *RELEVANSI: : Journal of Economics, Management and Business*, 4(1), 21-28. doi:<https://doi.org/10.61401/relevansi.v4i1.35>

Hesgrove, B., Zebrak, K., Yount, N., Sorra, J., & Ginsberg, C. (2024). Associations between Patient Safety Culture and Workplace Safety Culture in Hospital Settings. *BMC Health Services research*, 24(1), 1-8. doi:<https://doi.org/10.1186/s12913-024-10984-3>

Hodkinson, A., Tyler, N., Ashcroft, D. M., Keers, R. N., Khan, K., Phipps, D., . . . Campbell, S. (2020). Preventable Medication Harm Across Health Care Settings: A Systematic Review and Meta-Analysis. *BMC Medicine*, 18(1), 1-13. doi:<https://doi.org/10.1186/s12916-020-01774-9>

Ishii, K., Fujitani, K., & Matsushita, H. (2024). Interprofessional Collaboration Mediates the Relationship between Perceived Organizational Learning and Safety Climate in Hospitals: A Cross-Sectional Study. *International Journal of Risk & Safety in Medicine*, 35(3), 217-232. doi:<https://doi.org/10.3233/jrs-230026>

Jabbarpour, Y. M. (2017). Reviewing the Clinical Landscape of Patient Safety in Psychiatry. *Focus*, 15(4), 1-5. doi:<https://doi.org/10.1176/appi.focus.154S04>

Lee, S. E., & Dahinten, V. S. (2020). The Enabling, Enacting, and Elaborating Factors of Safety Culture Associated with Patient Safety: A Multilevel Analysis. *Journal of Nursing Scholarship*, 52(5), 544-552. doi:<https://doi.org/10.1111/jnus.12585>

Luxford, K. (2016). 'First, Do No Harm': Shifting the Paradigm Towards a Culture of Health. *Patient Experience Journal*, 3(2), 5-8. doi:<https://doi.org/10.35680/2372-0247.1189>

Nabilla, F. A., & Wibisono, D. (2025). Proposed Performance Management System (PMS) using Performance Prism Indicators Case Study at NGO XYZ. *Jurnal Bisnis dan Pemasaran Digital*, 4(2), 161-182. doi:<https://doi.org/10.35912/jbpd.v4i2.4534>

Ngaliman, N., Catrayasa, I. W., & Khairil, K. (2025). Analysis of Work Life Balance, Job Satisfaction and its Effect on the Performance of Employees of the General Bureau of the Regional Secretariat of the Riau Islands Province. *Studi Ekonomi dan Kebijakan Publik*, 3(2), 93-107. doi:<https://doi.org/10.35912/jomabs.v2i1.2461>

Nia, I., Fatanilam, F., Simahatie, M., & Chadafi, M. F. (2024). The Influence of Service Quality, Price and Product Quality on Consumer Satisfaction in Digahouse Bireuen District. *Proceeding Medan International Conference on Economic and Business*, 2, 1131-1141. doi:<https://doi.org/10.30596/miceb.v2i0.747>

Noort, M. C., Reader, T. W., Shorrock, S., & Kirwan, B. (2016). The Relationship between National Culture and Safety Culture: Implications for International Safety Culture Assessments. *Journal*

of occupational and organizational psychology, 89(3), 515-538.
doi:<https://doi.org/10.1111/joop.12139>

Pradana, E., Sudrajat, Nauli, P., & Yuliansyah, Y. (2021). Pengaruh Political Connection terhadap Cumulative Abnormal Return dan Trading Volume Activity pada Pemilihan Presiden 2019. *Jurnal Studi Pemerintahan dan Akuntabilitas*, 1(1), 83-95. doi:<https://doi.org/10.35912/jastaka.v1i1.290>

Putra, N. P. P., & Febriansyah, A. W. (2020). Pengaruh Pengawasan Dan Penghargaan Terhadap Kinerja Karyawan Pada PT. Tunas Dwipa Matra Lampung. *RELEVANSI: : Journal of Economics, Management and Business*, 4(2), 14-27. doi:<https://doi.org/10.61401/relevansi.v4i2.43>

Seshoka, M. J. (2023). *Patient Safety Culture in Critical Care Units in Public Hospitals of Tshwane Region*. University of Pretoria, South Africa.

Sexton, J. B., Adair, K. C., Profit, J., Bae, J., Rehder, K. J., Gosselin, T., . . . Frankel, A. (2021). Safety Culture and Workforce well-being Associations with Positive Leadership Walkrounds. *The Joint Commission Journal on Quality and Patient Safety*, 47(7), 403-411. doi:<https://doi.org/10.1016/j.jcq.2021.04.001>

Susanti, L. D., Reniati, R., & Altin, D. (2025). Sustainable Waste Management Strategy based on Circular Economy in Pangkalpinang City. *Studi Ekonomi dan Kebijakan Publik*, 3(2), 131-144. doi:<https://doi.org/10.35912/sekp.v3i2.5528>

Tame, Y. S., Marlissa, E. R., & Ngutra, R. N. (2025). Analysis of the Basic Sector and the Contribution of Economic Sectors to Economic Growth in the City of Jayapura. *Studi Ekonomi dan Kebijakan Publik*, 3(1), 61-80. doi:<https://doi.org/10.35912/sekp.v3i1.5261>

Tenza, I. S., Blignaut, A. J., Ellis, S. M., & Coetzee, S. K. (2024). Nurse Perceptions of Practice Environment, Quality of Care and Patient Safety Across Four Hospital Levels Within the Public Health Sector of South Africa. *BMC Nursing*, 23(1), 1-16. doi:<https://doi.org/10.1186/s12912-024-01992-z>

Vianney, L. S., & Nurofik, N. (2024). Dampak Corporate Social Responsibility dan Asimetri Informasi terhadap Cost of Equity Capital dengan Kualitas Audit sebagai Variabel Pemoderasi. *Jurnal Studi Pemerintahan dan Akuntabilitas*, 3(2), 63-70. doi:<https://doi.org/10.35912/jastaka.v3i2.2924>

Zumaroh, & Kusumawati, D. A. (2024). Pencapaian Sustainibilitas Organisasi Melalui Kualitas Kehidupan Kerja. *Studi Ekonomi dan Kebijakan Publik*, 3(1), 29-42. doi:<https://doi.org/10.35912/sekp.v3i1.4330>