AI-Driven tools and their influence on project decision-making in U.S. technology enterprises
Abstract:
Purpose: This study investigates the impact of AI-driven tools on project decision-making in U.S. information technology (IT) companies, focusing on the roles of predictive analytics, natural language processing (NLP) assistants, and AI dashboards in improving decision quality, project outcomes, and stakeholder collaboration.
Research Methodology: A mixed-methods design combining a systematic literature review and an empirical survey was used. Data were collected from project managers at major U.S. IT firms, including Microsoft, Oracle, and Google, who utilize AI-enabled platforms such as Microsoft Project, Jira, and IBM Watson. Quantitative data were analyzed through regression modeling and descriptive statistics, while qualitative insights were examined using thematic analysis.
Results: The results show that AI technologies significantly improve the accuracy of project decision-making, minimize budget deviations, and strengthen cross-team communication. Predictive analytics enhanced early risk identification, NLP assistants streamlined scheduling and reporting, and AI dashboards increased real-time visibility and stakeholder engagement. Companies demonstrating higher AI maturity achieved superior performance across key project indicators.
Conclusions: Integrating AI into project management enhances decision-making by combining automation with data-driven intelligence. Strategic AI adoption improves efficiency, reduces scope creep, and boosts managerial satisfaction within U.S. IT contexts.
Limitations: The study focuses exclusively on large U.S.-based IT firms, limiting its applicability to smaller or global enterprises. The rapid evolution of AI restricts long-term generalization.
Contribution: This research enriches project management and information systems literature by contextualizing AI’s role in high-tech decision-making and offering practical guidance for managers, executives, and policymakers driving digital transformation.
Downloads

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Adebayo, Y., Udoh, P., Kamudyariwa, X. B., & Osobajo, O. A. (2025). Artificial intelligence in construction project management: A structured literature review of its evolution in application and future trends. Digital, 5(3), 26. doi:https://doi.org/10.3390/digital5030026
Ajiga, D., Okeleke, P. A., Folorunsho, S. O., & Ezeigweneme, C. (2024). Enhancing software development practices with AI insights in high-tech companies. IEEE Software Engineering Institute, Technical Report TR-2024-003. doi:https://doi.org/10.51594/csitrj.v5i8.1450
Al Naqbi, H., Bahroun, Z., & Ahmed, V. (2024). Enhancing work productivity through generative artificial intelligence: A comprehensive literature review. Sustainability, 16(3), 1166. doi:https://doi.org/10.3390/su16031166
Ali, M. M. (2019). Impact of management information systems (MIS) on decision making. Global Disclosure of Economics and Business, 8(2), 83-90. doi:https://doi.org/10.18034/gdeb.v8i2.100
Aliu, J., Oke, A. E., Kineber, A. F., Ebekozien, A., Aigbavboa, C. O., Alaboud, N. S., & Daoud, A. O. (2023). Towards a new paradigm of project management: a bibliometric review. Sustainability, 15(13), 9967. doi:https://doi.org/10.3390/su15139967
Almalki, S. S. (2025). AI-Driven Decision Support Systems in Agile Software Project Management: Enhancing Risk Mitigation and Resource Allocation. Systems, 13(3), 208. doi:https://doi.org/10.3390/systems13030208
Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International journal of information management, 57, 102225. doi:https://doi.org/10.1016/j.ijinfomgt.2020.102225
Bouschery, S. G., Blazevic, V., & Piller, F. T. (2023). Augmenting human innovation teams with artificial intelligence: Exploring transformer?based language models. Journal of product innovation management, 40(2), 139-153. doi:https://doi.org/10.1111/jpim.12656
Cahyana, L., Pratama, A. P., & Welly, J. (2025). Proposed improvements on performance management system at PT JIEP by using balanced scorecard. Journal of Digital Business and Marketing, 1(1), 15-31. doi:https://doi.org/10.35912/jdbm.v1i1.3315
Chen, L., Nath, R., & Rocco, N. (2024). Key Issues of Predictive Analytics Implementation: A Sociotechnical Perspective. Journal of International Technology and Information Management, 32(1), 239-270. doi:https://doi.org/10.58729/1941-6679.1565
Cooper, R. G., & Brem, A. M. (2024). The adoption of AI in new product development: Results of a multi-firm study in the US and Europe. Research-Technology Management, 67(3), 44-53. doi:https://doi.org/10.1080/08956308.2024.2324241
Dennehy, D., Griva, A., Pouloudi, N., Dwivedi, Y. K., Mäntymäki, M., & Pappas, I. O. (2023). Artificial intelligence (AI) and information systems: perspectives to responsible AI. Information Systems Frontiers, 25(1), 1-7. doi:https://doi.org/10.1007/s10796-022-10365-3
El Khatib, M., & Al Falasi, A. (2021). Effects of artificial intelligence on decision making in project management. American journal of industrial and business management, 11(3), 251-260. doi:https://doi.org/10.4236/ajibm.2021.113016
Endriyono, E., Gunarto, T., & Murwiati, A. (2025). Measuring the achievements of smart economics in the smart village program in Lampung Province 2020-2024. Journal of Multidisciplinary Academic and Practice Studies, 3(3), 133-150. doi:https://doi.org/10.35912/jomaps.v3i3.3524
Ernst, E., Berg, J., & Moore, P. V. (2024). Artificial intelligence and the future of work: humans in control (Vol. 7, pp. 1378893): Frontiers Media SA.
Funda, V., & Francke, E. (2024). Artificial intelligence-powered decision support system for operational decision-making in the ICT department of a selected African university. African Journal of Science, Technology, Innovation and Development, 16(5), 689-701. doi:https://doi.org/10.1080/20421338.2024.2376916
Georgiev, S., Polychronakis, Y., Sapountzis, S., & Polychronakis, N. (2024). The role of artificial intelligence in project management: a supply chain perspective. Paper presented at the Supply Chain Forum: An International Journal.
Giachino, C., Cepel, M., Truant, E., & Bargoni, A. (2024). Artificial intelligence-driven decision making and firm performance: a quantitative approach. Management Decision. doi:https://doi.org/10.1108/MD-10-2023-1966
Gómez-García, S., Zamora, R., & Berrocal, S. (2023). New frontiers for political communication in times of spectacularization. Media and Communication, 11(2), 109-112. doi:https://doi.org/10.17645/mac.v11i2.7069
Gumay, N. F., & Syarif, A. (2025). Financial Management and Marketing Technology as Drivers of MSME Performance. Studi Ekonomi dan Kebijakan Publik, 4(1), 57-70. doi:https://doi.org/10.35912/sekp.v4i1.5515
Gupta, S., Modgil, S., Bhattacharyya, S., & Bose, I. (2022). Artificial intelligence for decision support systems in the field of operations research: review and future scope of research. Annals of Operations Research, 308(1), 215-274. doi:https://doi.org/10.1007/s10479-020-03856-6
Haefner, N., Wincent, J., Parida, V., & Gassmann, O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda?. Technological Forecasting and Social Change, 162, 120392. doi:https://doi.org/10.1016/j.techfore.2020.120392
Helminski, D., Kurlander, J. E., Renji, A. D., Sussman, J. B., Pfeiffer, P. N., Conte, M. L., . . . Ranusch, A. (2022). Dashboards in health care settings: protocol for a scoping review. JMIR research protocols, 11(3), e34894. doi:https://doi.org/10.2196/34894
Herath Pathirannehelage, S., Shrestha, Y. R., & von Krogh, G. (2025). Design principles for artificial intelligence-augmented decision making: An action design research study. European Journal of Information Systems, 34(2), 207-229. doi:https://doi.org/10.1080/0960085X.2024.2330402
Inga, J., Ruess, M., Robens, J. H., Nelius, T., Rothfuß, S., Kille, S., . . . Neumann, G. (2023). Human-machine symbiosis: A multivariate perspective for physically coupled human-machine systems. International Journal of Human-Computer Studies, 170, 102926. doi:https://doi.org/10.1016/j.ijhcs.2022.102926
Joshi, S. (2025). Artificial Intelligence and the Future of US Competitiveness: Sectoral Impacts, Workforce Transitions, and Policy Challenges. International Journal of Research in Commerce and Management Studies, 7(04), 76-110. doi:https://doi.org/10.2139/ssrn.5329991
Khalil, M., Bravo, A., Vieira, D., & Carvalho, M. M. d. (2025). Mapping the AI Landscape in Project Management Context: A Systematic Literature Review. Systems, 13(10), 913. doi:https://doi.org/10.3390/systems13100913
Kiani, A. (2024). Artificial intelligence in entrepreneurial project management: a review, framework and research agenda. International Journal of Managing Projects in Business. doi:https://doi.org/10.1108/IJMPB-03-2024-0068
Lee, C. S., Cheang, P. Y. S., & Moslehpour, M. (2022). Predictive analytics in business analytics: decision tree. Advances in Decision Sciences, 26(1), 1-29. doi:https://doi.org/10.47654/v26y2022i1p1-30
Ludlow, K., Westbrook, J., Jorgensen, M., Lind, K. E., Baysari, M. T., Gray, L. C., . . . Georgiou, A. (2021). Co-designing a dashboard of predictive analytics and decision support to drive care quality and client outcomes in aged care: a mixed-method study protocol. BMJ open, 11(8), e048657. doi:https://doi.org/10.1136/bmjopen-2021-048657
Mariani, C., & Mancini, M. (2024). AI’s Role in Project Management: An Overview of the Literature and a Research Agenda. Paper presented at the International Workshop “A Multidisciplinary Approach to Embrace Complexity and Sustainability in Megaprojects.
Mohammad, A., & Chirchir, B. (2024). Challenges of integrating artificial intelligence in software project planning: a systematic literature review. Digital, 4(3), 555-571. doi:https://doi.org/10.3390/digital4030028
Müller, R., Locatelli, G., Holzmann, V., Nilsson, M., & Sagay, T. (2024). Artificial intelligence and project management: Empirical overview, state of the art, and guidelines for future research. Project Management Journal, 55(1), 9-15. doi:https://doi.org/10.1177/87569728231225198
Narita, Y. (2023). Artificial Intelligence will transform decision-making. World Economic Forum.
Nenni, M. E., De Felice, F., De Luca, C., & Forcina, A. (2025). How artificial intelligence will transform project management in the age of digitization: a systematic literature review. Management Review Quarterly, 75(2), 1669-1716. doi:https://doi.org/10.1007/s11301-024-00418-z
Neri, G., Marshall, S., Chan, H. K.-H., Yaghi, A., Tabor, D., Sinha, R., & Mazumdar, S. (2025). Data Visualisation in AI-assisted Decision-making: A Systematic Review. Frontiers in Communication, 10, 1605655. doi:https://doi.org/10.3389/fcomm.2025.1605655
Nuhn, H., Oswald, A., Flore, A., & Lang, R. (2022). AI-Supported Natural Language Processing in Project Management: Capabilities and Research Agenda. Paper presented at the IPMA Research Conference Proceedings.
Nyqvist, R., Peltokorpi, A., & Seppänen, O. (2024). Can ChatGPT exceed humans in construction project risk management? Engineering, Construction and Architectural Management, 31(13), 223-243. doi:https://doi.org/10.1108/ECAM-08-2023-0819
Onwujekwe, G., & Weistroffer, H. R. (2025). Intelligent decision support systems: An analysis of the literature and a framework for development. Information Systems Frontiers, 1-32. doi:https://doi.org/10.1007/s10796-024-10571-1
PMI. (2023). Shaping the Future of Project Management With AI: Charting Your AI Upskilling Journey with AI. Project Management Institute.
PwC. (2024). Weaving AI into capital projects: Tech-powered, underpinned by AI and advanced analytics.
Razia, B. (2025). Artificial Intelligence and Its Impact on Decision-Making in Managing Projects: A Systematic Literature Review. Green Finance and Energy Transition: Innovation, Legal Frameworks and Regulation, 115-122. doi:https://doi.org/10.1007/978-3-031-75960-4_12
Salimimoghadam, S., Ghanbaripour, A. N., Tumpa, R. J., Kamel Rahimi, A., Golmoradi, M., Rashidian, S., & Skitmore, M. (2025). The Rise of Artificial Intelligence in Project Management: A Systematic Literature Review of Current Opportunities, Enablers, and Barriers. Buildings, 15(7), 1130. doi:https://doi.org/10.3390/buildings15071130
Shamim, M. M. I., Hamid, A. B. b. A., Nyamasvisva, T. E., & Rafi, N. S. B. (2025). Advancement of Artificial Intelligence in Cost Estimation for Project Management Success: A Systematic Review of Machine Learning, Deep Learning, Regression, and Hybrid Models. Modelling, 6(2), 35.
Taboada, I., Daneshpajouh, A., Toledo, N., & De Vass, T. (2023). Artificial intelligence enabled project management: a systematic literature review. Applied Sciences, 13(8), 5014. doi:https://doi.org/10.3390/app13085014
Tumpa, R. J., & Naeni, L. (2025). Improving decision-making and stakeholder engagement at project governance using digital technology for sustainable infrastructure projects. Smart and Sustainable Built Environment, 14(4), 1292-1329. doi:https://doi.org/10.1108/SASBE-10-2024-0451
Vasey, B., Nagendran, M., Campbell, B., Clifton, D. A., Collins, G. S., Denaxas, S., . . . Ibrahim, M. (2022). Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. bmj, 377. doi:https://doi.org/10.1136/bmj-2022-070904
Widiasa, K., Widnyani, I. A. P. S., & Astawa, I. W. (2023). Evaluasi Kebijakan Bantuan Keuangan Khusus tentang Bali Smart Island di Desa Pakraman di Kecamatan Buleleng. Jurnal Studi Pemerintahan dan Akuntabilitas, 3(1), 1-8. doi:https://doi.org/10.35912/jastaka.v3i1.1983
Yang, J., Blount, Y., & Amrollahi, A. (2024). Artificial intelligence adoption in a professional service industry: A multiple case study. Technological Forecasting and Social Change, 201, 123251. doi:https://doi.org/10.1016/j.techfore.2024.123251
- Adebayo, Y., Udoh, P., Kamudyariwa, X. B., & Osobajo, O. A. (2025). Artificial intelligence in construction project management: A structured literature review of its evolution in application and future trends. Digital, 5(3), 26. doi:https://doi.org/10.3390/digital5030026
- Ajiga, D., Okeleke, P. A., Folorunsho, S. O., & Ezeigweneme, C. (2024). Enhancing software development practices with AI insights in high-tech companies. IEEE Software Engineering Institute, Technical Report TR-2024-003. doi:https://doi.org/10.51594/csitrj.v5i8.1450
- Al Naqbi, H., Bahroun, Z., & Ahmed, V. (2024). Enhancing work productivity through generative artificial intelligence: A comprehensive literature review. Sustainability, 16(3), 1166. doi:https://doi.org/10.3390/su16031166
- Ali, M. M. (2019). Impact of management information systems (MIS) on decision making. Global Disclosure of Economics and Business, 8(2), 83-90. doi:https://doi.org/10.18034/gdeb.v8i2.100
- Aliu, J., Oke, A. E., Kineber, A. F., Ebekozien, A., Aigbavboa, C. O., Alaboud, N. S., & Daoud, A. O. (2023). Towards a new paradigm of project management: a bibliometric review. Sustainability, 15(13), 9967. doi:https://doi.org/10.3390/su15139967
- Almalki, S. S. (2025). AI-Driven Decision Support Systems in Agile Software Project Management: Enhancing Risk Mitigation and Resource Allocation. Systems, 13(3), 208. doi:https://doi.org/10.3390/systems13030208
- Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International journal of information management, 57, 102225. doi:https://doi.org/10.1016/j.ijinfomgt.2020.102225
- Bouschery, S. G., Blazevic, V., & Piller, F. T. (2023). Augmenting human innovation teams with artificial intelligence: Exploring transformer?based language models. Journal of product innovation management, 40(2), 139-153. doi:https://doi.org/10.1111/jpim.12656
- Cahyana, L., Pratama, A. P., & Welly, J. (2025). Proposed improvements on performance management system at PT JIEP by using balanced scorecard. Journal of Digital Business and Marketing, 1(1), 15-31. doi:https://doi.org/10.35912/jdbm.v1i1.3315
- Chen, L., Nath, R., & Rocco, N. (2024). Key Issues of Predictive Analytics Implementation: A Sociotechnical Perspective. Journal of International Technology and Information Management, 32(1), 239-270. doi:https://doi.org/10.58729/1941-6679.1565
- Cooper, R. G., & Brem, A. M. (2024). The adoption of AI in new product development: Results of a multi-firm study in the US and Europe. Research-Technology Management, 67(3), 44-53. doi:https://doi.org/10.1080/08956308.2024.2324241
- Dennehy, D., Griva, A., Pouloudi, N., Dwivedi, Y. K., Mäntymäki, M., & Pappas, I. O. (2023). Artificial intelligence (AI) and information systems: perspectives to responsible AI. Information Systems Frontiers, 25(1), 1-7. doi:https://doi.org/10.1007/s10796-022-10365-3
- El Khatib, M., & Al Falasi, A. (2021). Effects of artificial intelligence on decision making in project management. American journal of industrial and business management, 11(3), 251-260. doi:https://doi.org/10.4236/ajibm.2021.113016
- Endriyono, E., Gunarto, T., & Murwiati, A. (2025). Measuring the achievements of smart economics in the smart village program in Lampung Province 2020-2024. Journal of Multidisciplinary Academic and Practice Studies, 3(3), 133-150. doi:https://doi.org/10.35912/jomaps.v3i3.3524
- Ernst, E., Berg, J., & Moore, P. V. (2024). Artificial intelligence and the future of work: humans in control (Vol. 7, pp. 1378893): Frontiers Media SA.
- Funda, V., & Francke, E. (2024). Artificial intelligence-powered decision support system for operational decision-making in the ICT department of a selected African university. African Journal of Science, Technology, Innovation and Development, 16(5), 689-701. doi:https://doi.org/10.1080/20421338.2024.2376916
- Georgiev, S., Polychronakis, Y., Sapountzis, S., & Polychronakis, N. (2024). The role of artificial intelligence in project management: a supply chain perspective. Paper presented at the Supply Chain Forum: An International Journal.
- Giachino, C., Cepel, M., Truant, E., & Bargoni, A. (2024). Artificial intelligence-driven decision making and firm performance: a quantitative approach. Management Decision. doi:https://doi.org/10.1108/MD-10-2023-1966
- Gómez-García, S., Zamora, R., & Berrocal, S. (2023). New frontiers for political communication in times of spectacularization. Media and Communication, 11(2), 109-112. doi:https://doi.org/10.17645/mac.v11i2.7069
- Gumay, N. F., & Syarif, A. (2025). Financial Management and Marketing Technology as Drivers of MSME Performance. Studi Ekonomi dan Kebijakan Publik, 4(1), 57-70. doi:https://doi.org/10.35912/sekp.v4i1.5515
- Gupta, S., Modgil, S., Bhattacharyya, S., & Bose, I. (2022). Artificial intelligence for decision support systems in the field of operations research: review and future scope of research. Annals of Operations Research, 308(1), 215-274. doi:https://doi.org/10.1007/s10479-020-03856-6
- Haefner, N., Wincent, J., Parida, V., & Gassmann, O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda?. Technological Forecasting and Social Change, 162, 120392. doi:https://doi.org/10.1016/j.techfore.2020.120392
- Helminski, D., Kurlander, J. E., Renji, A. D., Sussman, J. B., Pfeiffer, P. N., Conte, M. L., . . . Ranusch, A. (2022). Dashboards in health care settings: protocol for a scoping review. JMIR research protocols, 11(3), e34894. doi:https://doi.org/10.2196/34894
- Herath Pathirannehelage, S., Shrestha, Y. R., & von Krogh, G. (2025). Design principles for artificial intelligence-augmented decision making: An action design research study. European Journal of Information Systems, 34(2), 207-229. doi:https://doi.org/10.1080/0960085X.2024.2330402
- Inga, J., Ruess, M., Robens, J. H., Nelius, T., Rothfuß, S., Kille, S., . . . Neumann, G. (2023). Human-machine symbiosis: A multivariate perspective for physically coupled human-machine systems. International Journal of Human-Computer Studies, 170, 102926. doi:https://doi.org/10.1016/j.ijhcs.2022.102926
- Joshi, S. (2025). Artificial Intelligence and the Future of US Competitiveness: Sectoral Impacts, Workforce Transitions, and Policy Challenges. International Journal of Research in Commerce and Management Studies, 7(04), 76-110. doi:https://doi.org/10.2139/ssrn.5329991
- Khalil, M., Bravo, A., Vieira, D., & Carvalho, M. M. d. (2025). Mapping the AI Landscape in Project Management Context: A Systematic Literature Review. Systems, 13(10), 913. doi:https://doi.org/10.3390/systems13100913
- Kiani, A. (2024). Artificial intelligence in entrepreneurial project management: a review, framework and research agenda. International Journal of Managing Projects in Business. doi:https://doi.org/10.1108/IJMPB-03-2024-0068
- Lee, C. S., Cheang, P. Y. S., & Moslehpour, M. (2022). Predictive analytics in business analytics: decision tree. Advances in Decision Sciences, 26(1), 1-29. doi:https://doi.org/10.47654/v26y2022i1p1-30
- Ludlow, K., Westbrook, J., Jorgensen, M., Lind, K. E., Baysari, M. T., Gray, L. C., . . . Georgiou, A. (2021). Co-designing a dashboard of predictive analytics and decision support to drive care quality and client outcomes in aged care: a mixed-method study protocol. BMJ open, 11(8), e048657. doi:https://doi.org/10.1136/bmjopen-2021-048657
- Mariani, C., & Mancini, M. (2024). AI’s Role in Project Management: An Overview of the Literature and a Research Agenda. Paper presented at the International Workshop “A Multidisciplinary Approach to Embrace Complexity and Sustainability in Megaprojects.
- Mohammad, A., & Chirchir, B. (2024). Challenges of integrating artificial intelligence in software project planning: a systematic literature review. Digital, 4(3), 555-571. doi:https://doi.org/10.3390/digital4030028
- Müller, R., Locatelli, G., Holzmann, V., Nilsson, M., & Sagay, T. (2024). Artificial intelligence and project management: Empirical overview, state of the art, and guidelines for future research. Project Management Journal, 55(1), 9-15. doi:https://doi.org/10.1177/87569728231225198
- Narita, Y. (2023). Artificial Intelligence will transform decision-making. World Economic Forum.
- Nenni, M. E., De Felice, F., De Luca, C., & Forcina, A. (2025). How artificial intelligence will transform project management in the age of digitization: a systematic literature review. Management Review Quarterly, 75(2), 1669-1716. doi:https://doi.org/10.1007/s11301-024-00418-z
- Neri, G., Marshall, S., Chan, H. K.-H., Yaghi, A., Tabor, D., Sinha, R., & Mazumdar, S. (2025). Data Visualisation in AI-assisted Decision-making: A Systematic Review. Frontiers in Communication, 10, 1605655. doi:https://doi.org/10.3389/fcomm.2025.1605655
- Nuhn, H., Oswald, A., Flore, A., & Lang, R. (2022). AI-Supported Natural Language Processing in Project Management: Capabilities and Research Agenda. Paper presented at the IPMA Research Conference Proceedings.
- Nyqvist, R., Peltokorpi, A., & Seppänen, O. (2024). Can ChatGPT exceed humans in construction project risk management? Engineering, Construction and Architectural Management, 31(13), 223-243. doi:https://doi.org/10.1108/ECAM-08-2023-0819
- Onwujekwe, G., & Weistroffer, H. R. (2025). Intelligent decision support systems: An analysis of the literature and a framework for development. Information Systems Frontiers, 1-32. doi:https://doi.org/10.1007/s10796-024-10571-1
- PMI. (2023). Shaping the Future of Project Management With AI: Charting Your AI Upskilling Journey with AI. Project Management Institute.
- PwC. (2024). Weaving AI into capital projects: Tech-powered, underpinned by AI and advanced analytics.
- Razia, B. (2025). Artificial Intelligence and Its Impact on Decision-Making in Managing Projects: A Systematic Literature Review. Green Finance and Energy Transition: Innovation, Legal Frameworks and Regulation, 115-122. doi:https://doi.org/10.1007/978-3-031-75960-4_12
- Salimimoghadam, S., Ghanbaripour, A. N., Tumpa, R. J., Kamel Rahimi, A., Golmoradi, M., Rashidian, S., & Skitmore, M. (2025). The Rise of Artificial Intelligence in Project Management: A Systematic Literature Review of Current Opportunities, Enablers, and Barriers. Buildings, 15(7), 1130. doi:https://doi.org/10.3390/buildings15071130
- Shamim, M. M. I., Hamid, A. B. b. A., Nyamasvisva, T. E., & Rafi, N. S. B. (2025). Advancement of Artificial Intelligence in Cost Estimation for Project Management Success: A Systematic Review of Machine Learning, Deep Learning, Regression, and Hybrid Models. Modelling, 6(2), 35.
- Taboada, I., Daneshpajouh, A., Toledo, N., & De Vass, T. (2023). Artificial intelligence enabled project management: a systematic literature review. Applied Sciences, 13(8), 5014. doi:https://doi.org/10.3390/app13085014
- Tumpa, R. J., & Naeni, L. (2025). Improving decision-making and stakeholder engagement at project governance using digital technology for sustainable infrastructure projects. Smart and Sustainable Built Environment, 14(4), 1292-1329. doi:https://doi.org/10.1108/SASBE-10-2024-0451
- Vasey, B., Nagendran, M., Campbell, B., Clifton, D. A., Collins, G. S., Denaxas, S., . . . Ibrahim, M. (2022). Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. bmj, 377. doi:https://doi.org/10.1136/bmj-2022-070904
- Widiasa, K., Widnyani, I. A. P. S., & Astawa, I. W. (2023). Evaluasi Kebijakan Bantuan Keuangan Khusus tentang Bali Smart Island di Desa Pakraman di Kecamatan Buleleng. Jurnal Studi Pemerintahan dan Akuntabilitas, 3(1), 1-8. doi:https://doi.org/10.35912/jastaka.v3i1.1983
- Yang, J., Blount, Y., & Amrollahi, A. (2024). Artificial intelligence adoption in a professional service industry: A multiple case study. Technological Forecasting and Social Change, 201, 123251. doi:https://doi.org/10.1016/j.techfore.2024.123251
