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Abstract 
Purpose: This study conducts a comparative study of various 

options pricing models and introduces a new model.  

Research methodology: This paper reviews eight option pricing 

models, including the Black-Scholes-Merton model (BSM), Monte 

Carlo simulation (MC), Heston, GARCH, Lattice, Jump Diffusion 

models (JDM), Normal Inverse Gaussian-Cox-Ingersoll-Ross 

Model, and a novel model called Black-Scholes-Artificial Neural 

Network (BSANN). The objective is to predict the European call 

and put options using a payoff calculation. The underlying asset is 

Khodro, a famous automobile producer company in Iran, for the last 

year. The daily prices were also used as historical data. The primary 

software used for the calculations and plots was MATLAB. An 

Excel option pricing toolbox was used to obtain more accurate and 

improved results. 

Results: Based on the results, it can be concluded that the proposed 

model, BS-ANN, provides the most accurate estimation with the 

lowest standard deviation.  

Limitations: There are several limitations to be considered when 

choosing an underlying asset. An important factor is the availability 

of sufficient data on the number of shared transactions. Another 

limitation of this study is the absence of trading halts. Additionally, 

caution is crucial when selecting an appropriate number of 

estimated parameters. 

Contribution: By utilizing the presented model, researchers, 

individuals, investors, and stock market analysts interested in 

trading can enhance their estimations. 

Novelty: The most significant novelty of this study is the 

presentation of a hybrid model incorporating unique features. 

Keywords: Hybrid Option Pricing Models, Artificial Neural 

Network, Financial Engineering, Option Price Estimation 

How to Cite: Farahani, M. S., Babaei, S., & Esfahani, A. (2024). 

"Black-Scholes-Artificial Neural Network": A novel option pricing 

model. International Journal of Financial, Accounting, and 

Management, 5(4), 489-523.

1. Introduction 
These options have become extremely popular. There are two main reasons for this finding. First, 

options are interesting to investors because of their potential for speculation and hedging (Jiang & Pan, 

2022). Second, there is an organized and structured way to determine their value. Thus, they can be 

purchased and sold confidently. 

 

Options are securities whose values are derived from other securities, known as "underlying assets" 

(Parameswaran, 2022). There is a lot of data on the underlying assets. Pricing an option can be a time 

consuming task. Thus, it makes sense to use fast and accurate option pricing models (Almeida, Fan, 

Freire, & Tang, 2023). Options provide investors with a payoff that depends on the value of the 

underlying asset (Pucci di Benisichi 2019). The payoff is obtained by calculating the difference between 
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the initial and future prices (Guo 2022). Therefore, we should analyze the future prices of the underlying 

asset with multiple possible outcomes.  

 

Generally, there are two options: 1. Call option, 2. Put option. An option to buy a security is called a 

"call" option, while an option to sell is a "put" option (Guides, 2018). Many rules exist regarding how 

and when an option can be exercised. One of the major sorting options is to divide them into four 

categories: 1. European, 2. American, 3. Asian, and 4. African. Vanilla and 4. Exotic. The "European 

option" can be exercised on a specific future date for a price agreed upon in the contract. An "American 

option" can be exercised on any day prior to a specified future date. The options mentioned above are 

generally referred to as "vanilla options" to indicate that they are standardized and considered less 

complex compared to "exotic options" (Almeida et al., 2023). In Part Three, which focuses on the 

methodology, the subject of options is developed and expanded.  

 

There are many studies on option-pricing models. However, in this article, we have attempted to 

examine a diverse range of option pricing models, showing impressive results and demonstrating the 

calculation of payoffs. In addition, we present a hybrid model. The main goal of this study is to introduce 

a hybrid model. While conducting a comparative study of different option pricing models with improved 

codes, the second goal is to determine the best model based on its error and accompanying plots. An 

important stock, Khodro, has been selected as the underlying asset. The main contribution of this article 

is that, on one hand, we have attempted to present a hybrid model for option pricing. However, the code 

has been improved. Different software programs, such as MATLAB and Excel, were used to improve 

the results.  

 

Artificial intelligence (AI) has emerged as an important concept in recent studies. It has several 

characteristics that differentiate it from other methods, such as econometric, mathematical, and 

statistical models (Kase & Laka, 2019). These characteristics include the ability to accelerate 

calculations, compatibility with intricate data structures (El Fallahi et al., 2022), and enhancements 

through training and learning. Researchers are continuously striving to uncover new applications of AI 

in various fields, such as medicine, finance, economics, and transportation.  

 

Consequently, we have attempted to utilize artificial neural networks (ANN) as a method for option 

pricing. A hybrid model known as the Black-Scholes-Artificial Neural Network (BSANN) was used to 

predict Khodro option prices. More details about this method are provided in the methodology section.  

 

As is evident, like all other models or methods, options have various parameters and variables, such as 

strike price and expiration date (time to maturity). Therefore, if these parameters are carefully adjusted, 

taking into account economic factors such as the inflation rate and risk factors such as political and 

interest rate risks, it could be possible to make a fair and reasonable prediction.  

 

Now that you understand the status of options compared to other investment approaches, it is time to 

examine the concepts in options, such as option categories and related keywords. 

 

Table 1. derivative concepts 

Row Concepts Definition 

1 Call Option Option to purchase the underlying asset 

2 Put Option Option to sell the underlying asset 

3 Options Contract The agreement between the writer and the buyer 

4 Expiration Date The last day on which an options contract can be exercised 

5 Strike Price The pre-determined price at which the underlying asset can be 

bought or sold 

6 Intrinsic Value The current value of the option's underlying asset 

7 Time Value The premium, or the extra amount that traders are willing to pay for 

an option 

8 Vanilla Option A standard option with no unique features, terms, or conditions 
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9 American Option Options that can be exercised at any time before the expiration date 

10 European Option Options that can only be exercised at the expiration date 

11 Exotic Option Any option with a complex structure or payoff calculation 

12 Bermudan Option An option that can only be exercised during a predefined portion of 

its lifespan 

 

Table 1 shows two types of options: call options and put options, along with various option categories 

including Vanilla, American, and European options.  

 

The remainder of this paper is organized as follows. The second section is dedicated to a review of the 

literature. The third part describes the methodology and applied models, including the statistical 

population, period of time, and data statistics. Part Four focuses on the findings, results, and 

experimental processes. The final section consists of conclusions and remarks. For more information, 

please refer to the Appendix. 

 

2. Literature review 
There are several methods, such as mathematical models and computational algorithms, for recognizing 

the behavior of asset prices that offer an understanding of fairness (Das et al., 2023; Mayes and 

Govender, 2019; Tudor, 2022). Louis Bachelier published his doctoral thesis in 1900. In his thesis, 

Bachelier made the first attempt to model stock price movements as random walks. This thesis also 

addresses the problem of option pricing. In 1964, Samuelson modified Bachelier's model by replacing 

the stock price with the return in the original model. This correction eliminated the unrealistic negative 

value of stock prices in the original model. In 1973, Black and Scholes corrected Samuelson's model. 

Compared to Samuelson, the risk-free interest rate is included in the formula. In summary, the following 

table was created: 

 

Table 2. Option pricing history 

Period Explanations 

1900 Bachelier, the purpose of risk management 

1950s The discovery of Bachelier's work 

1960s Samuelson's formula, which contains the expected return 

1967 Thorp and Kassouf beat the market by going long on stocks and shorting warrants 

1973 Black-Scholes 

1997 The Black-Merton-Scholes formula assumes that all investors exist in a risk-neutral 

world, where the expected return is equal to the risk-free interest rate 

 

The most popular models, such as Black-Scholes-Merton and Monte Carlo simulations, use the same 

factors, such as time to maturity, strike price, and interest rate, in option pricing (Parameswaran, 2022). 

However, volatility is one of the major factors that make these models unique to each other. Volatility 

is a major issue in financial mathematics. First, it helps us understand price dynamics; second, it is the 

only factor that cannot be seen; third, volatility has always been an interesting issue in a wide range of 

research areas (Wang, Cheng, Yin, & Yu, 2022).  

 

Black and Scholes (1973) presented the first complete equilibrium option-pricing model. In the same 

year, Merton attempted to redefine the Black and Scholes model and made some modifications. The 

jump-diffusion model, suggested by Merton, is a stochastic process that involves both jumps and 

diffusion. Merton modified the BSM to account for dividends and variable interest rates 

(Parameswaran, 2022). One popular model is the Monte Carlo option pricing model, which utilizes 

Monte Carlo simulation and processes to calculate the valuation of an option. Boyle (Trinh & Hanzon, 

2022) performed the first calculation of option pricing using Monte Carlo. In finance, the lattice model 

is used for the valuation of options with discrete-time model assumptions. The simplest lattice model is 

the binomial option pricing model (BM), which was developed in 1979 by Cox-Ross-Rubinstein and is 

commonly referred to as the CRR model (He, Coolen, & Coolen-Maturi, 2021). Some option pricing 

models assume constant volatility, whereas many financial time series are characterized by time-
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varying volatility. The GARCH models proposed by Engle (1982), Dana (2016), and Bollerslev (1986) 

consider the dynamics of returns. Another model is the Levy process (Bertoin, 1992; Levy, 1992), which 

is a stochastic process with independent and stationary increments (Velasquez, 2020). 
 

Every option-pricing model includes various assumptions and hypotheses. For example, the B-S model 

contains the assumptions considered (Karagozoglu, 2022). However, this remains a question. Are these 

assumptions true in real-life? Therefore, these assumptions must be modified. Owing to changes in 

these assumptions, different models have emerged. One of the assumptions in Black-Scholes-Merton 

(B-S-M) is that asset price returns follow a lognormal distribution. While most financial data exhibit 

skewness, kurtosis, and term structures, implied volatility is also observed (Bali et al., 2019). Therefore, 

some researchers recognize the volatility of asset returns as a hidden stochastic process and conclude 

that the B-S-M model cannot be used for stochastic volatility. As a result, they changed their methods 

and started using other processes, such as Levy, Monte Carlo simulation, and Fourier. 

 

Recently, there has been considerable interest in the development of artificial neural networks (ANNs) 

for solving various problems (Roy, 2023). Neural networks, which are capable of learning relationships 

from data, represent a class of robust nonlinear models inspired by the neural architecture of the brain. 

Theoretical advances along with hardware and software innovations have addressed previous 

limitations in the implementation of machine learning, making neural network methods accessible to a 

diverse range of disciplines (Qin & Chiang, 2019).  

 

Financial applications that require pattern matching, classification, and prediction, such as corporate 

bond ratings (Hamid & Razak, 2023), trend prediction ( Farahani & Hajiagha, 2021; Taheri & 

Aliakbary, 2022), failure prediction (Veganzones & Severin, 2021), and underwriting (Jansen, Nguyen, 

& Shams, 2020), have proven to be excellent candidates for this new technology (Wani, 2022).  

 

The following table (Table 3) displays various research studies and models of option pricing, including 

their methodologies and results. 

 

Table 3. Research background 

 

Findings 
Journal 

Statistical 

population 
Model/Main Variables Title Author Row 

- All models are 

overpriced across 

all Moneyness 

categories, with a 

high level of 

volatility in the 

In-the-money 

category. 

-The Monte Carlo 

simulation method 

outperforms when 

the volatility is 

lower, while the 

Black-Scholes 

model and the 

Binomial model 

outperform the 

entire sample, 

regardless of the 

Moneyness being 

ignored. 

Journal of 

Banking and 

Financial 

Economics 

Nifty50 option 

index during 

the period of 

25/07/2014 to 

30/06/2016 

Options pricing, option 

markets, the Black-Scholes 

model, the Binomial model, 

the Monte-Carlo simulation 

model, and Greek letters. 

Options Pricing 

by Monte Carlo 

Simulation, 

Binomial Tree 

and BMS 

Model: a 

Comparative 

Study 

Bendob and 

Bentouir 

(2019) 

 

1. 
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- This paper 

demonstrated the 

possibility of 

preparing relevant 

probabilities in 

quantum 

superposition. 

-They discussed 

the European call 

option and the 

Asian option, both 

of which depend 

on the average 

asset price before 

the maturity date. 

 

A Physical 

Review 

 

 

European 

option, Asian 

option 

Black-Scholes-Merton 

option pricing, classical 

Monte Carlo pricing, 

Quantum algorithm for 

Monte Carlo 

Quantum 

Computational 

Finance: Monte 

Carlo Pricing of 

Fnancial 

Derivatives 

Rebentrost, 

Gupt, and 

Bromley 

(2018) 

 

2. 

- The proposed 

model 

outperforms 

parametric 

methods and other 

machine learning 

methods, reducing 

the overall mean 

absolute 

percentage error 

(MAPE) by more 

than 50%. 

Information 

Fusion 

 

S&P 500 

European call 

options, 

EuroStoxx50 

call options, 

and Hang Seng 

Index put 

options 

Option pricing, 

Delta hedging, 

Deep learning, 

Data fusion, 

Data distillation 

 

Deep Option: A 

Novel Option 

Pricing 

Framework 

Based on Deep 

Learning with 

Fused Distilled 

Data from 

Multiple 

Parametric 

Methods 

 

Jang, Yoon, 

Kim, Gu, and 

Kim (2021) 

 

3 

- This paper 

presents a novel 

application of 

Bayesian methods 

in the pricing of 

multi-asset 

options. 

Physica A: 

Statistical 

Mechanics and 

its 

Applications 

 

China 

Quanto option, 

Foreign asset, 

Exchange rate, 

Correlation, 

Bayesian statistical 

inference, 

Markov Chain Monte Carlo 

 

The Numerical 

Simulation of 

Quanto Option 

Prices Using 

Bayesian 

Statistical 

Methods 

 

Lin, Li, Gao, 

and Wu 

(2021) 

 

4 

- This paper 

discusses the 

pricing of carbon 

options in the EU 

carbon trading 

market, with the 

aim of providing a 

scientific pricing 

framework for 

future carbon 

options trading in 

China. Learn from 

the meaning. 

Journal of 

Applied 

Science and 

Engineering 

Innovation 

Daily closing 

price of EU 

emission 

allowance 

futures options 

Carbon options; Carbon 

emission rights; GARCH 

model; Black-Scholes model 

Research on 

Pricing of 

Carbon Options 

Based on 

GARCH and B-

S Model 

Liu and 

Huang (2019) 

 

5 

https://www.sciencedirect.com/science/journal/15662535
https://www.sciencedirect.com/science/journal/15662535
https://www.sciencedirect.com/science/journal/03784371
https://www.sciencedirect.com/science/journal/03784371
https://www.sciencedirect.com/science/journal/03784371
https://www.sciencedirect.com/science/journal/03784371
https://www.sciencedirect.com/science/journal/03784371
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- The results 

indicate that the 

hybrid model 

outperforms the 

pure ANN model 

not only in 

forecasting 

accuracy, but also 

in terms of 

training time and 

model 

complexity. 

Journal of 

Mathematics 

and Statistics 

Intraday data 

for the AAPL 

stock option for 

the period 

between 

December 

2016 and 

March 2017 

with 56,238 

data points. 

A Hybrid model, Artificial 

Neural Networks, option 

pricing 

time series models, ANN-

GJR-GARCH model 

A Hybrid 

Artificial Neural 

Network Model 

for Option 

Pricing 

Simiyu, 

Waititu, and 

Akinyi (2019) 

6 

 

- The results 

indicate that the 

proposed models 

can generate more 

accurate prices for 

all classes of 

options. 

Compared with 

BS using 

annualized 20 

intraday returns as 

volatility, there is 

a 94.5% 

improvement in 

option pricing in 

terms of mean 

squared error 

when using BS. 

Computational 

Economics 

European 

option 

Option pricing, 

computational intelligence, 

deep neural networks, 

machine learning, Black 

Scholes 

Deep Learning 

Based Hybrid 

Computational 

Intelligence 

Models for 

Options Pricing 

Arin and 

Ozbayoglu 

(2022) 

7 

- This article 

reviews the use of 

various methods 

for pricing 

different options 

in recent years 

and compares 

their advantages 

and 

disadvantages. 

Advances in 

Economics, 

Business and 

Management 

Research 

European 

Options, 
American 

Options, Other 

Options 

Machine learning, option 

pricing, deep learning, neural 

network. 

Application of 

Machine 

Learning in 

Option Pricing: 

A Review 

Li (2022) 8 

The numerical 

results show that 

the ANN solver 

can significantly 

reduce the 

computing time. 

Journal of 

Risks 
- 

Machine learning; neural 

networks, computational 

finance, option pricing, 

implied volatility, GPU, 

Black-Scholes, Heston 

COS method, Brent’s 

iterative root-finding method 

Pricing Options 

and Computing 

Implied 

Volatilities 

Using Neural 

Networks 

 

Liu and 

Huang (2019) 
9 
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3. Research methodology 
3.1 Models and formulas 

Different models and methods have been used to simulate option prices. To summarize and condense 

the content, we have omitted these formulas. Instead, we refer to each model as an article. These models 

include the Monte Carlo simulation (M-C), Black-Scholes option pricing model (BSM), binomial 

option pricing model (BOPM), Merton's Jump Diffusion option pricing model, Heston option pricing 

model, NIG-CIR option pricing model, GARCH option pricing model, genetic algorithm (GA), and 

BSANN option pricing model.  

 

To evaluate option prices using a Monte Carlo simulation, this method generates different possible paths 

for the underlying asset in a risk-neutral environment. Then, the value of the option is calculated for 

each path. Finally, it takes the average of all the option values and calculates their present values. The 

Monte Carlo method employs three steps to price an option (Trinh and Hanzon, 2022). 

1. Calculate the potential futures prices of underlying asset(s). 

2. Calculates the payoff of the option for each potential underlying price path  

3. Discount the payoff back to today and average them to determine the expected price 

 

This process begins by computing the B-S numbers using input parameters, such as the strike price and 

interest rate. Subsequently, a random variable called epsilon was used as an input number. Finally, the 

option value and payoff were computed. The Black-Scholes model is primarily used to calculate the 

theoretical value of European-style options. It cannot be applied to American-style options because it 

can be performed before the maturity date. 

 

The binomial option pricing model uses an iterative procedure that allows for the specification of nodes 

or points in time between the valuation date and the option's expiration date (Yeh & Lien, 2020). The 

binomial model is best represented using binomial trees, which are diagrams that illustrate the payoff 

and value of the option at different nodes throughout its lifespan. BOPM has several assumptions (He 

2019). The binomial pricing model traces the evolution of the option price in discrete time under a risk-

neutral measure. This measure ensures that the discounted price process is martingale.  

 

The jump-diffusion model, introduced in 1976 by Robert Merton, is a model for stock price behavior 

that incorporates small day-to-day "diffusive" movements together with larger, randomly occurring 

"jumps" (Chowdhury & Jeyasreedharan, 2019). The inclusion of jumps allows for more realistic 

"crash" scenarios, rendering the standard dynamic replication hedging approach of the Black-Scholes 

model ineffective. This causes option prices to increase compared with the Black-Scholes model, 

which depends on investors’ risk aversion. This equation is based on the B-S formula. 

 

The stock price is full of volatility and the interest rate is not fixed. Therefore, it would be preferable to 

use a model that considers this condition. One model that rejects constant volatility and uses a stochastic 

process is the Heston stochastic volatility model (Heston, 1993). This model assumes that the volatility 

is arbitrary. It is an extension of the Black-Scholes stochastic differential equation (SDE), where the 

volatility is derived from the Cox-Ingersoll-Ross (CIR) process (Cui et al., 2017). This model assumes 

that the distribution of asset returns is nonlognormal. 

 

The NIG-CIR option pricing model was developed by Carr et al. in 2003. This is a combination of these 

two words. NIG stands for Normal Inverse Gaussian and CIR stands for the Cox-Ingersoll-Ross model 

(Kovachev, 2014). The model is defined under the risk-neutral measure, which was first introduced by 

Duan (1995) with a locally risk-neutral valuation relationship (LRNVR), in which the conditional 

variances and model parameters remain the same under both physical and risk-neutral measures. Duan's 

LRNVR has been widely used by finance researchers and practitioners to price options under the 

GARCH framework. However, as pointed out by Barone-Adesi (Jayaraman, 2022), empirical evidence 

shows that the restriction in Duan's LRNVR resulted in poor pricing and hedging performance.  
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Since the groundbreaking research by Bollerslev (1986) and Engle (1982), the GARCH volatility model 

family has been extensively utilized in empirical asset pricing and financial risk management. This is 

primarily because the likelihood function of asset returns in GARCH models can often be expressed in 

a closed form using observed data. Model parameters can be estimated using the maximum likelihood 

estimation (MLE) method (Smith, 2019), which is often a challenging task for most stochastic volatility 

models. Motivated by the success of GARCH models in fitting asset returns, Duan (1995) pioneered 

the application of GARCH models to SPX option pricing by proposing LRNVR. Duan et al. 's LRNVR 

has been reported in many studies.  

 

One of the main applicable analytical software programs is MATLAB. Many script codes were prepared 

in the file. Thus, by accessing these m.files, it is possible to tune, that is, change and improve them 

based on your problem. In this study, MATLAB R2017a was used as the primary analytical tool. 

Another important software is the Option Pricing Excel add-in software. By adding this feature, input 

variables can be inserted, and it is possible to see the final output for different option groups, such as 

Asian and European groups. However, other software is used, such as the MG Soft Exotic Options 

Calculator, FinOptionsXL, and option-pricing packages. 

 

3.1.1 Genetic algorithm  

The genetic algorithm is a global search technique that utilizes various operations, including coding, 

decoding, mutation, and crossover, to discover an approximate optimal solution (Gen & Lin, 2023). 

Mutation and crossover are operators that create new and optimal solutions, respectively. Binary coding 

was used, and 17 bits of chromosomes were utilized. Of these, 12 bits are used to represent the existence 

("1") or non-existence ("0") of the input variables, whereas the remaining five bits (25=32) are used to 

determine the number of neurons in the hidden layers. The GA parameters are presented in Table 4. 
 

Table 4. GA parameters 
Output 

Error 

Output 

Activation 

Function 

Input 

Activation 

Function 

Mutation 

Rate 

Crossover 

Rate 

Number of 

Generation 

Population 

size 

Max 

Iteration 

MSE Logistic Logistic 0.1 0.9 50 20 1000 

Selection parents Mutation Crossover 

Roulette wheel method Binary Method One-point method 

 

We used 70% of the data for training, and the remaining portion was used for the validation and testing 

datasets. Initially, we used 100 epochs and then increased it to 1000. The GA process is as follows. 
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Figure 1. Genetic Algorithm Process  

 

In this study, certain stock market indicators (specifically, peer stocks in the automobile industry) were 

utilized as input variables to enhance the predictive capability. We must normalize the data before using 

AI techniques. As mentioned earlier, the GA has been used for feature selection. However, it is a 

heuristic algorithm for optimizing and obtaining the best possible solution.  

 

In this study, we attempt to predict the price of Khodro options as the dependent variable. Daily data 

were used. The considered indicators are listed in Table 5. 

 

Table 5. Economic indicators as input variables 

Row Indicator Symbols Nature 

1 Niroo moharekeh Kemoharekeh Input variable 

2 Bahman group Khebahman  Input variable 

3 Bahman dizel  Khedizel Input variable 

4 Investment development of Irankhodro  Khegostar Input variable 

5 Saipa Dizel  Khekaveh Input variable 

6 Financial group of Kerman khodro Khekerman Input variable 
7 Iranian tractor manufacturers Khemotor  Input variable 

8 Parskhodro  Khepars  Input variable 

9 Saipa  Khesapa  Input variable 

10 Iran automobile segment  Khetogha  Input variable 

11 Zamyad  Khezamya  Input variable 

12 IranKhodro Khodro  Target variable 

These indicators were adopted from the TSETMC database using the TSECLIENT software. 

Population 

Initialization  

Parent selection 

Crossover  

Mutation  

Survivor selection  

Terminate and return 

best 

Loop until 

termination 

criteria reached 

Initialize a better population 

using local search 

local search after crossover 

local search after mutation 
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3.1.2 BSANN option pricing model 

This section introduces and explains the BSANN model for option pricing. As you may know, artificial 

intelligence models attempt to emulate the intelligent processes of the human brain when making 

decisions. Based on different approaches or mechanisms, AI has various sub-branches such as machine 

learning, artificial neural networks, and deep learning (DL). In this study, artificial neural networks 

(ANN) were used to predict option prices. An ANN is a method that simulates the human brain and 

thinking approach. It has three important layers: I. input layer, II. Hidden layer, III. Output layer. In this 

study, B-S parameters such as stock price (𝑆0/𝐾), time to maturity(𝜏), risk-free rate (𝑟), and volatility 

(𝜎) were used as input variables for the artificial neural network (ANN). There are various types of 

information streams in networks. One of these is the feed-forward neural network. The information 

flow was direct and forward, without any feedback. The second is back propagation. In this data stream 

and network, the flow of information is accompanied by feedback and return. These two structures can 

be described as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Backpropagation vs. feedforward neural network 

 

A feed-forward multilayer perceptron neural network was used as the network structure. Machine 

learning includes three main components: training II. Validation III. Testing. Based on multiple studies, 

70% of the data were used for training, while the remaining portion was allocated for validation and 

testing. In pricing options using ANN, the input and output variables need to be accessed. The 

underlying asset price (Khodro price) is an input variable, and the option price using the BS model is 

the output. 

 

The following figure shows the network structure of the pricing option. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Architecture of the proposed Neural Network 

 

Based on Figure 3, the first layer is the input layer. In this layer, there are weights and biases that are 

summed and then passed through the first activation function, which is used to capture nonlinear 
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p 
W1 

a1 W2 

n1 

a2=y 

Hidden Layer 
Output Layer 

n2 

1 b1 
1 b2 
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features. This process is then iterated in the next layer, which is the hidden layer. However, in this case, 

the new weights and biases must pass through a linear activation function. Finally, the output layer 

exists. Before performing any calculations, the data were normalized for several reasons. The most 

important reason for this is data scaling. 

 

Sĩ =
(Si−Smin)

Smax−Smin
. i = 1 … . N                                                                                                  (1) 

where: 

𝑆�̃�: Normalized data 

𝑆𝑖: Each observation of each variable 

𝑆𝑚𝑖𝑛: Minimum value of each variable 

𝑆𝑚𝑎𝑥: Maximum value of each variable  

In Equation 1,  𝑖 denotes the amount of data.  

The different parameters and more details regarding the ANN parameters are available in the following 

table: 

 

Table 6. Parameters 

Parameters Explanations 

Training Back-propagation (BP) 

Optimization algorithm Levenberg-Marquardt (LM) 

Training rate 0.01 

Iterations 1000 

Activation function Tan-Sigmoid 

Pure line 

 
The Levenberg-Marquardt (LM) method is used as an optimization algorithm to minimize the error. 

First, the learning rate is set to 0.01. If we do not observe any improvement in the learning of the 

network, it increases to 0.1. The diagram below illustrates the research process and flowchart. 

 

 

 

 

 

 

 

 

 

 

 
To calculate the option price, we need to consider the following parameters using the Black-Scholes 

(B-S) models. 

 
Table 7. B-S parameters 

Components Parameters Range Unit 

Input Stock price (𝑆0/𝐾) [100, 600] - 

Time to maturity (τ) [0.002, 2] Year 

Risk free rate (𝑟) [0.1, 0.2] - 

Volatility (σ) [0.4, 0.5] - 

Output Call/ Put price (0.0, 1) - 
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Historical data shows that stock prices range from 100 to 600. Time to maturity was considered to be 

approximately two years. The minimum and maximum risk-free rates are 0.1 and 0.2, respectively. The 

volatility based on inflation ranges from 0.4 0.5. Finally, the option price is between 0 and 0.9, based 

on normalized data. 

 

For more information about calculations and formulas using the Black-Scholes model, please refer to 

section 3-2-2. 

 

4. Result and discussion 
First, we determine parameters such as the price of the underlying asset (current stock price), strike 

price, interest rate, volatility, and time to expire. Table 8 lists the parameters. 
 

Table 8. Parameters 

Row Symbol Khodro 

1 Current Stock Price (𝑆0) 400 

2 Strike Price (𝐾) 200:400:600 

3 Interest Rate (Risk Free Rate) 0.2 

4 Volatility (𝜎) 0.42 

5 Expiry (Year) 1 

 

We are going to price an option for a stock in the automobile industry with the symbol "Khodro" for a 

one-year period, which means the time to maturity is one year. The stock price is 400 Toman (or 4000 

Rials), and the hypothetical strike prices for the call option and put option are 200 and 600 Toman, 

respectively. According to central bank reports, the interest rate, which represents the risk-free rate, is 

20%. The stock market volatility was 42%.  

 

We consider a strike price that is 50% different from the current price of the underlying asset, for various 

reasons. 

1. The inflation rate was high. At the time of writing the paper, the inflation rate was 42% according 

to reports from the statistical center.  

2. Devaluation of the national currency  

3. There is high risk associated with investing in stocks and options. Therefore, taking high risks 

increases the expected profit.   

4. Increasing the value of parallel markets, such as cryptocurrencies, foreign currencies, automobiles, 

housing, etc. 

 
4.1. Monte Carlo Option Pricing Simulation 

First, we should establish the parameters in various dimensions, such as strike price and volatility. 
 

Table 9. Input variables and results 

Input Variables Input Values 

Underlying price 400 

Strike price Call:200, Put:600 

Time to maturity (days) 360 

Interest rate (%) 20 

Volatility (%) 42 

Number of steps 36 

Number of simulations 100.000 

Output Results 

Option Call Put 

Option value 237.726784 128.015638 

Standard deviation 16.581779 16.352008 

Standard error 0.537096 0.517096 
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Elapsed Time 32.2391 30.9944 

 
Then, you can observe the simulation results after 100.000 iterations in the following figure: 

 

Figure 5. Monte Carlo simulation results after 100,000 iterations 

 
We created an m-file in MATLAB with specified parameters including the input price, number of 

iterations, and asset paths. To accomplish this, we utilized a preexisting m-file or script. We then 

changed or adjusted the scale according to the desired outcomes. The underlying asset price for the 

initial days does not exhibit much volatility or increase significantly. During this time, the underlying 

assets increased to 2000 and 2500. The following table shows the value of stock options due to ROI 

during different months. 

 

Figure 6. ROI of Stock Option Over 
Time (Call option)

Figure 7. Stock Option Value by Month 
(Call option)
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The value of the stock options was divided into three parts, with ROI of 20%, 22%, and 25%. After a 

year, the value of stock options increased by more than 5000 Rials for both call and put options.  

For a call option, the estimated value of the options is 3,366.44, after 12 months, with a 20% growth 

rate. In a put option, the options are estimated to be worth 2,966.44 after 12 months, with a 20% growth 

rate.  

 

Finally, the payoff is calculated for four positions: long, short, long, and short. The following figures 

show this: 

  

Figure 8. ROI of Stock Option Over Time 
(Put option)

Figure 9. Stock Option Value by Month 
(Put option)

Figure 10. Long Call Figure 11. Short Call
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More details on the payoff, theoretical value, and stock price over time can be observed in the following 

table. 

 

Table 10. Some details about long call, short call, long put and short put positions 

 

 

 

 

 
4.2 Black-Scholes Option Pricing Model (BSM) 
First, the parameters are set. Thus, it was possible to obtain results. Table11 shows the parameters and 

results. 

 

Table 11. Input variables and results for call and put option using the BSM model 

Input Variables Input Values 

Underlying price 400 

Strike price Call:200, Put:600 

Time to maturity (days) 360 

Interest rate (%) 20 

Volatility (%) 42 

Dividend Yield 0.01 

Results 

Snapshot Calls Puts Snapshot Calls Puts 

Price 236.889 0.635 Price 37.034 128.272 

Figure 12. Long Put Figure 13. Short Put

Payoff -5,649.25 -5,265.01 -4,876.89 -4,484.85 -4,088.85 -3,688.85 -3,288.85 -2,884.85 -2,476.81 -2,064.69 -1,648.45

Theoretical -1,938.0 -1,558.7 -1,175.3 -787.7 -396.0 0.0 396.2 796.7 1,201.3 1,610.2 2,023.4

Stock Price 380.4 384.2 388.1 392.0 396.0 400.0 404.0 408.0 412.1 416.2 420.4

Payoff 5,649.25 5,265.01 4,876.89 4,484.85 4,088.85 3,688.85 3,288.85 2,884.85 2,476.81 2,064.69 1,648.45

Theoretical 1,938.0 1,558.7 1,175.3 787.7 396.0 0.0 -396.2 -796.7 -1,201.3 -1,610.2 -2,023.4

Stock Price 380.4 384.2 388.1 392.0 396.0 400.0 404.0 408.0 412.1 416.2 420.4

Payoff 9,133.19 8,748.95 8,360.83 7,968.79 7,572.79 7,172.79 6,772.79 6,368.79 5,960.75 5,548.63 5,132.39

Theoretical 1,239.8 989.9 740.8 492.8 245.8 0.0 -242.2 -483.0 -722.6 -960.7 -1,197.3

Stock Price 380.4 384.2 388.1 392.0 396.0 400.0 404.0 408.0 412.1 416.2 420.4

Payoff -9,133.19 -8,748.95 -8,360.83 -7,968.79 -7,572.79 -7,172.79 -6,772.79 -6,368.79 -5,960.75 -5,548.63 -5,132.39

Theoretical -1,239.8 -989.9 -740.8 -492.8 -245.8 0.0 242.2 483.0 722.6 960.7 1,197.3

Stock Price 380.4 384.2 388.1 392.0 396.0 400.0 404.0 408.0 412.1 416.2 420.4
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Delta 0.990 -0.010 Delta 0.390 -0.610 

Gamma 0.000 0.000 Gamma 0.002 0.002 

Theta -0.093 -0.004 Theta -0.153 0.116 

Vega 0.110 0.110 Vega 1.538 1.538 

Rho 1.585 -0.044 Rho 1.202 -3.686 

Position ITM OTM Position OTM ITM 

Elasticity 1.67 -6.13 Elasticity 4.21 -1.90 

Probability 

of closing 

ITM 

97.2% 2.8% Probability 

of closing 

ITM 

24.2% 75.8% 

 

It should be noted that all parameters and their values were adapted from various research papers and 

statistics. For example, volatility and interest rates are determined by the inflation rate, which is set by 

the central bank. In all tables, the appropriate parameters must be set, and the results can be seen 

automatically. However, interpreting these results is important. From the formulas, it is clear that 

gamma has the same value for both calls and puts, and the same applies to vega for call and put options. 

This can be seen directly from put-call parity because the difference between a put and a call is a forward 

contract, which is linear in and independent of ( a forward contract has zero gamma and zero vega).  

 

In practice, some sensitivities are often expressed in scaled-down terms to align with the potential 

magnitude of the parameter variations. For example, it is often reported to be divided by 10,000 (1 basis 

point rate change), 100 (1 vol point change), and 365 or 252 (1-day decay based on either calendar days 

or trading days per year). A 1-year call option with an exercise price (strike price) of 200 on stock 

trading at 400. Determine whether you should buy the option if the annual risk-free rate is 20% and the 

annual standard deviation of stock returns is 42%.  

 

The value of the call option needs to be determined using the Black-Scholes option pricing model and 

then compared with the current price of the option. If an option is fairly priced, it can be purchased. 

 

We first need to find 𝑑1 and 𝑑2: 

𝑑1 =
ln(400/200)+(20%+0.5∗42%2)(1)

42%√(1)
=2.336                                                                                                     

𝑑2 =
ln(400/200)+(20%−0.5∗42%2)(1)

42%√(1)
= 2.336 −  42%√1  = 1.916                                                                            

Next, we determined the probability of a standardized normal distribution using the NORMSDIST 

function in Microsoft Excel. 𝑁(𝑑1) and 𝑁(𝑑2) 0.990, and 0.972, respectively. 

 

Once we have 𝑁(𝑑1) and 𝑁(𝑑2), we can plug-in the relevant numbers in the Black-Scholes formula 

(Table5): 

𝐶 =  400 ∗ 0.990 − 200 ∗ 𝑒−0.2∗1 0.972    

 𝐶 = 236.889 

As per the model, the option value is higher than the strike price. Therefore, the call option is invalid. 

If we have the current value of the call premium, stock price, exercise price, time to maturity, and risk-

free rate, we can calculate implied volatility. After finding the call and put options, we calculate the 

payoff. Figure 14 and 15 present the payoffs and behavior of the option during the considered period.  
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Figure 14 shows the value of the call option with an underlying price of 400 Toman and strike price of 

200. If the value of the option is greater than 200, the option is valid. If the price is below 200, the value 

is zero, and no option is applied. Figure 15 shows the value of the put option with an underlying price 

of 400 and strike price of 600. If the value of the option is less than 600, then the option is valid. If it is 

greater than 600, the value is zero, and no option is applied. 

 

4.3 Binomial Option Pricing (BOP) 

Several steps were taken to calculate the option price using the BOP model. To simplify matters, we 

make several assumptions: 

1 .Input in blue cells. The output appears in yellow cells. 

2 .The macro uses a binomial tree to price standard options. 

3 .The assumptions are the GBM and risk-neutral valuation. 

4 .No tax or transaction costs were included. 

5 .The maximum number of steps is 255 .  

6. For reference, please refer to Hull J. (2000). 

 

The parameters considered for calculating the call option are as follows: 

Table 12. Input variables and results for pricing European call option using the BOPM model 

Input variables Results 

European or American E or A E Option Value 232,963927  

Call or put 
 

C or P C Delta 0,98019234 
 

Current Asset Price S (0) 400 Gamma 0,0001667 
 

Strike Price 
 

X 200 Pheta -30,52298 
 

Time to Maturity T 1 (Greek letters need at least 3 steps.) 

Volatility 
 

Sigma 0,42 
 

Risk-Free Interest Rate R 0,2 

Dividend Yield Q 0,01 

No of Steps 
 

N 20 

 

Here, is an example of the binomial options pricing model for a 20 period (𝑁) call option. Let’s say the 

current stock price (𝑆) is 400. The strike price (𝑋) of the option is 200. The option expires (time to 

maturity) in one year. At the end of the year, the stock price will either rise to 2616 or fall to 61. We 

assume that there is a 98% chance that it will rise to 2616 and a 2% chance that it will fall to 61. 

The interest rate (𝑅) is 20%. If the stock rises to 2616, the value of the option will be 2417. This is 

Figure 14. Call Option price Figure 15. Put Option price

https://strategiccfo.com/should-you-use-markup-or-margin-for-pricing/
https://strategiccfo.com/blue-chip-stocks/
https://strategiccfo.com/call-option/
https://strategiccfo.com/purchase-option/
https://strategiccfo.com/intrinsic-value-stock-options/
https://strategiccfo.com/nominal-interest-rate-definition/
https://strategiccfo.com/preferred-stocks-preferred-share/
https://strategiccfo.com/strategic-value-optimization/
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because the option value is equal to the stock price minus strike price. There is a 98% chance that 

the option will be worth 2417 at the end of the year. If the stock falls to 61, then the value of the option 

will be 0. This is because  option value  cannot be negative. The values were either positive or zero. 

There is a 2% chance that the option will be worth nothing by the end of the year. 

We can then calculate the call option using the BOPM.    

 

Table 13. An example of calculating the price of a European call option using the Binomial Option 

Pricing Model (BOPM) with 20 steps. 

 
 

The option price varied for each step. The value of the option at each step can be seen in the following 

steps: 

Time step 0(Today) 1 2 3 4 5 … 18 19 20

Asset price 400 439/3864852 482/6512 530/176 582/3805 639/7253 … 2168/806 2382/36 2616/942

364/1441086 400 439/3865 482/6512 530/176 … 1797/41 1974/395 2168/806

331/5023 364/1441 400 439/3865 … 1489/614 1636/291 1797/41

301/7866 331/5023 364/1441 … 1234/527 1356/086 1489/614

274/7345 301/7866 … 1023/121 1123/864 1234/527

250/1074 … 847/9175 931/4088 1023/121

… 702/7166 771/9104 847/9175

582/3805 639/7253 702/7166

482/6512 530/176 582/3805

400 439/3865 482/6512

331/5023 364/1441 400

274/7345 301/7866 331/5023

227/6878 250/1074 274/7345

188/6976 207/2779 227/6878

156/3842 171/7828 188/6976

129/6043 142/366 156/3842

107/4104 117/9866 129/6043

89/01696 97/78212 107/4104

73/77332 81/0375 89/01696

67/1603 73/77332

61/14007

Option value 232/963927 270/1691051 311/4101 357/004 407/3247 462/8063 … 1970/598 2183/159 2416/942

196/4171036 229/9116 267/1741 308/4648 354/0988 … 1599/574 1775/398 1968/806

163/2322 193/2361 226/7973 264/1215 … 1292/086 1437/463 1597/41

133/2355 159/9091 189/9867 … 1037/253 1157/398 1289/614

106/3156 129/7594 … 826/0587 925/2922 1034/527

82/4261 … 651/0303 732/9332 823/1211

… 505/9745 573/5146 647/9175

… 385/7586 441/3955 502/7166

286/1291 331/9011 382/3805

203/5605 241/1569 282/6512

135/1313 165/9521 200

78/42015 103/6257 131/5023

33/89614 51/97237 74/73449

7/545527 14/45403 27/68781

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0

Binomial Option Pricing Model (BOPM)-Call option

https://strategiccfo.com/how-does-a-cfo-add-value/
https://strategiccfo.com/reverse-stock-split/
https://strategiccfo.com/stock-options-basics/
https://strategiccfo.com/synthetic-stock/
https://strategiccfo.com/how-does-a-cfo-bring-value-to-a-company/
https://strategiccfo.com/put-option/
https://strategiccfo.com/fair-market-value/
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Figure 16. Call Option price, using the BOPM 

 

We use the same steps to calculate the put option. The considered parameters are listed in Table 14. 

 

Table 14. Input variables and results for pricing European put options using the BOPM model 
Input variables Results 

European or American E or A E Option Value 130,070684  

Call or put 
 

C or P P delta -0,6229038 
 

Current Asset Price S (0) 400 gamma 0,0022917 
 

Strike Price 
 

X 600 pheta 41,9184538 
 

Time to Maturity T 1 (Greek letters need at least 3 steps.) 

Volatility 
 

Sigma 0,42 
 

Risk-Free Interest Rate R 0,2 

Dividend Yield Q 0,01 

No of Steps 
 

N 20 

 
Here is an example of the binomial option pricing model for a 20 period (𝑁) put option. Let’s say the 

current stock price (𝑆) is 400. The strike price (𝑋) of the option is 600. The option expires (time to 

maturity) in one year. At the end of the year, the stock price will either rise to 2616 or fall to 61. We 

assume that there is a 38% chance that it will rise to 2616 and a 62% chance that it will fall to 61. 

The interest rate (𝑅) is 20%. 

 

If the stock rises to 2616, then the value of the option will be 0. This is because  option value  cannot 

be negative. The values were either positive or zero. There is a 38% chance that the option will be worth 

nothing by the end of the year. If the stock falls to 61, then the value of the option will be 539. This is 

because the option value equals the strike price minus stock price. There is a 62% chance that 

the option will be worth 539 by the end of the year.  

 

The next step is to calculate the put option using a Binomial Option Pricing Model (BOPM). Table 

15. An example of calculating the price of a European put option using the Binomial Option Pricing 

Model (BOPM) with 20 steps 
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The put option price for each step is shown in Figure 17. 

Time step 0(Today) 1 2 3 4 5 … 18 19 20

Asset price 400 439/3865 482/6512 530/176 582/3805 639/7253 … 2168/806 2382/36 2616/942

364/1441 400 439/3865 482/6512 530/176 … 1797/41 1974/395 2168/806

331/5023 364/1441 400 439/3865 … 1489/614 1636/291 1797/41

301/7866 331/5023 364/1441 … 1234/527 1356/086 1489/614

274/7345 301/7866 … 1023/121 1123/864 1234/527

250/1074 … 847/9175 931/4088 1023/121

… 702/7166 771/9104 847/9175

582/3805 639/7253 702/7166

482/6512 530/176 582/3805

400 439/3865 482/6512

331/5023 364/1441 400

274/7345 301/7866 331/5023

227/6878 250/1074 274/7345

188/6976 207/2779 227/6878

156/3842 171/7828 188/6976

129/6043 142/366 156/3842

107/4104 117/9866 129/6043

89/01696 97/78212 107/4104

73/77332 81/0375 89/01696

67/1603 73/77332

61/14007

Option value 130/0706838 109/2222 88/85502 69/57089 51/99032 36/68512 … 0 0 0

156/091 134/2625 112/2542 90/65987 70/16753 … 0 0 0

183/7577 161/6657 138/7277 115/4451 … 0 0 0

212/3064 190/6886 167/6472 … 0 0 0

240/9333 220/4437 … 0 0 0

268/9104 … 0 0 0

… 3/859326 0 0

34/31332 8/246181 0

105/9504 64/11888 17/61953

188/519 154/8631 117/3488

256/9482 230/0678 200

313/6593 292/3942 268/4977

360/659 344/0476 325/2655

399/6102 386/8556 372/3122

431/8913 422/333 411/3024

458/6444 451/7351 443/6158

480/8162 476/1022 470/3957

499/1912 496/2967 492/5896

514/4196 513/0329 510/983

526/9032 526/2267

538/8599

Binomial Option Pricing Model (BOPM)-Put option
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Figure 17. Put Option price, using the BOPM 

 
We calculate the option price using the Binomial Options Pricing Model (BOPM) with a maximum of 

255 iterations. The results are presented in the appendix (Table A1). A related macro is used for the 

calculation of BOPM in the appendix (Table A2). 
 

4.4 Merton's Jump Diffusion Option Pricing Model 

First, we begin this section by setting the parameters, as in other sections. The table below shows the 

primary and associated parameters. 

 

Table 16. input variables and the results 

Input Variables Input Values 

Underlying price 400 

Strike price Call:200, Put:600 

Time to maturity (days) 360 

Interest rate (%) 20 

Volatility (%) 42 

Iteration 30 

Jump Per Year 1 

Percent Total Vol 0.5 

Dividends Rate 0.01 

Output Results 

Option Call Put 

Option value 232.383 130.2655 

Standard deviation 12.581779 13.352008 

Standard error 0.41939 0.4450667 

Elapsed Time 7.12 7.12 

 

For the call and put options, the option price and standard error were 232.383 and 130.2655, with 

standard errors of 0.41939 and 0.445066, respectively.  

 

There are more details on these jumps and price levels. Both the drift and jump values follow a normal 

distribution. The vertical lines in the plot indicate the jump positions. These parameters are listed in the 

following table along with their corresponding equations. 

 

𝑟𝑡 = 𝛼 + 𝜀𝑡 + 𝐼𝑡𝑢𝑡   
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Table 17. details about jumps 

Variable Value Symbol 

Constant Drift 0.10% α 

Std Dev of Drift 42.00% σε 

Jump Probability 10.00% - 

Jump Mean 1.00% E[u] 

Jump Std Dev 35.00% σu 

 

 
Figure 18. Jump diffusion  

 

In the figure above, there are five main jumps: a jump at 400, two jumps between 400 and 500, a jump 

between 600 and 700, and a jump between 900 and 1000 price levels.  

 

The following figures show the volatility surface of call options and put options in comparison to the 

Black-Scholes model using a spot price of 100 (on a 100 scale). 
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For a more comprehensive and meaningful understanding of implied volatility, value probability 

density, and returns for future years, please refer to the appendix (Table A3) for additional results. 
 

4.5 Heston Option Pricing Model 

First, we considered the parameters and their corresponding values. 

 

Table 18. Input variables and the results 

Input Variables Input Values 

Underlying Price 400 

Strike Price Call=200, Put=600 

Interest Rate (%) 20 

Time to Maturity (Year) 1 

Figure 19. Call Option Price

Figure 20. Put Option Price
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Kappa (mean reversion speed of variance of base 

parameter set) 

0.1 

Theta (volatility of variance of base parameter set) 0.42 

Rho (correlation of base parameter set) 0.1 

Vinst (instantaneous variance of base parameter set) 0.17 

Vlong (long term variance of base parameter set) 0.17 

Dividends Rate 0.01 

Output Results 

Option  Call Put 

Option Value 232.9843 133.5824 

Standard Deviation 0.11245 0.11358 

Standard Error 0.3748 0.3786 

Elapsed Time 56.2391 53.9944 

 
The option price and standard error for the call and put options were 232.98 and 133.58, with standard 

errors of 0.3748 and 0.3786, respectively.  

 

The following figures show the volatility surfaces of call options and put options on a logarithmic scale:

 
 
4.6 NIG-CIR Option Pricing Model 

The parameters of the model are as follows. 

 

Table 19. Input variables and the results 

Input Variables Input Values 

Underlying price 400 

Strike price Call:200, Put:600 

Time to maturity (days) 360 

Interest rate (%) 20 

Volatility (%) 42 

Dividends 0.01 

Alpha 7 

Beta -3 

Delta 1 

Lambda 1 

Figure 21. Call Option Figure 22. Put Option
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Kappa 1 

Output Results 

Option Call Put 

Option value 233.175 131.1045 

Standard deviation 10.535879 10.624428 

Standard error 0.351193 0.3541466 

Elapsed Time 20.61 15.32 

 

The option price and standard error for the call and put options are 233.175, and 131.1045 while the 

standard errors are 0.351193 and 0.3541466, respectively.  

 

A figure of a normal inverse Gaussian process with certain parameters below shows skewness and 

kurtosis. 

 
Figure 23. Normal inverse Gaussian process 

 

The figure displays excess kurtosis and skewness.  

 
4.7 GARCH estimation model 
First, similar to the other methods, we begin the computation by setting the parameters.  

Table 20. GARCH Model Parameters 

Input Variables Input Values 

Underlying price 400 

Strike price Call:200, Put:600 

Time to maturity (days) 365 

Expected rate of return (%) 50 

Volatility (%) 42 

Alpha 7 

Beta -3 

Omega 0.8 

Number of time interval 1 
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Output Results 

Option Call Put 

Option value 286.2185 181.8312 

Average value 188.9305046 275.799135 

Standard deviation 108.4465426 84.76613162 

Standard error 0.39895 0.62862 

Elapsed Time 8.36 10.53 

 
The initial price (underlying asset price) was 400. Therefore, we set the strike price to 200 for the call 

option, and 600 for the put option. The results for the call and put options are shown in Figure 24 and 

25, respectively. 

 

 
Figure 24. Call option calculation using GARCH model 

 

 
Figure 25. Put option calculation using GARCH model 
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4.8 Genetic Algorithm Feature Selection 
As mentioned earlier, GA was used for feature selection. Model selection was applied to find a neural 

network with a topology that optimizes the error of the new data. There are two different types of 

algorithms for model selection: order- and input-selection algorithms. Order selection algorithms are 

used to determine the optimal number of hidden neurons in the network. Input selection algorithms are 

responsible for determining the optimal subset of the input variables.  

 

The algorithm selected for order selection in this application was SA. This method was inspired by the 

metallurgical industry and utilizes stochastic principles. A graphical representation of the resulting deep 

architecture is presented below. It contains a scaling layer, a neural network, and an unscaling layer. 

Yellow circles represent scaling neurons, blue circles represent perceptron neurons, and red circles 

represent unscaled neurons. The number of inputs was 11 and the number of outputs was one. The 

complexity, represented by the number of hidden neurons, is 1. 

 

Table 21. Order selection algorithm parameters   
Description Value 

Minimum order Number of minimum hidden perceptrons to be 

evaluated. 

1 

Maximum order Number of maximum hidden perceptrons to be 

evaluated. 

10 

Cooling Rate Temperature reduction factor for the simulated 

annealing. 

0.5 

Trials number Number of trials for each neural network. 3 

Tolerance Tolerance for the selection error in the trainings of the 

algorithm. 

0.01 

Selection loss goal Goal value for the selection error. 0 

Minimum temperature Minimum temperature reached in the simulated 

annealing algorithm. 

0.001 

Maximum iterations number Maximum number of iterations to perform the 

algorithm. 

100 

Maximum time Maximum time for the order selection algorithm. 3600 

Plot training error history Plot a graph with the training error of each iteration. TRUE 

Plot selection error history Plot a graph with the selection error of each iteration. TRUE 

 
This table can be applied to two options: 1. Call option 2. Put option. 

The following figure illustrates the final architecture for the order selection.  
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Figure 26. Order selection results 

 

For call and put options, the best network structures were [11-1-1] and [11-9-1], respectively. 

 

Table 22. order selection results 

Criteria Call Put 

Optimal order 1 9 

Optimum training error 0.006001 0.117048 

Optimum selection error 0.008186 0.102574 

Iterations number 4 7 

Elapsed time 0:01 0:00 

  

The following chart displays the error history of various subsets during the GA input-selection process. 

The blue line indicates the training error. The initial values for the call and put options are 0.0162654 

and 0.55321, respectively. The final value after 100 generations was 0.00602875 for the call option and 

0.22185 for the put option. The orange line represents the selection error. Its initial values were 

0.0205194 and 0.51623, and the final values after 100 generations were 0.00833242 and 0.20453. 

Order selection for call option Order selection for put option
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Figure 27. Genetic algorithm error plot 

 

Finally, the figure below displays the selected input variables obtained using GA. 

 
Figure 28. Input selection results 

 

For a call option, all variables are considered as inputs, whereas for a put option, only seven variables 

are selected. 

 

Table 23. Input selection results 

Criteria Call option Put option 

Optimal number of 

inputs 
11 7 

Optimum training error 0.22713 0.180748 

Optimum selection error 0.16625 0.138278 

Ga error plot (Call option) Ga error plot (Put option)

Input selection results using GA(Call 
option)

Input selection results using GA(Put 
option)
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Generations number 100 100 

Elapsed time 0:03 0:02 

 
4.9 Artificial Neural Network  

After identifying the most significant variables as inputs, the optimal solution can be obtained using 

ANN. Therefore, the first step was to determine the best network structure. 

 
Figure 29. Top 5 best network architecture for call option and put option respectively 

 

The blue highlights indicate the top five best networks, whereas the black and bold ones represent the 

absolute best network. Next, we trained the network by considering the previously mentioned 

parameters. 

 

Table 24. Training output 

Parameters Call option Put option 

Training Validation Training Validation 

Absolute error 0.3453 0.4535 0.6371 0.8394 

Network error 0.000118 0 0.00011 0 

Error improvement 5.69E-19 4.42E-07 

Iteration 71 75 

Training speed, Ite/sec 88.74999 93.7499 

Architecture [11-5-1] [11-5-1] 

Training algorithm Levenberg-Marquardt Levenberg-Marquardt 

Training stop reason No error improvement No error improvement 

 

Then, a regression analysis (Liviani & Rachman, 2021) and fitting were performed using an ANN. 

Levenberg-Marquardt is used as an optimization algorithm to prevent getting trapped in local minima. 
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Figure 30. Regression  

The above figure shows the regression based on different datasets, including training, validation, and 

testing. All regressions have R-squared values greater than 99%, which is indicative of an interesting 

result.  

The network performance during each iteration and the best network performance are shown in the 

figure below: 

 
Figure 31. Performance of the network during iterations 

 
The best validation performances for the call option and put option were 0.00014417 and 0.00019657 

at epochs 23 and 13, respectively. 

 

The following figure shows the target versus the output. In other words, the actual value is represented 

by a red line, whereas the predicted value is represented by a blue line. 

Regression (Call option) Regression (Put option)

Performance (Call option) Performance (Put option)
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Figure 32. Performance of the network 

 

Error estimation using various loss functions is presented in the table below. 

Table 25. Error tables 

Options 

Loss functions 

Call option Put option 

Training Selection Testing Training Selection Testing 

Sum squared error 110671 20120.8 25090 301208 54824.5 68779.4 

Mean squared error 435.71 379.637 473.39 1185.86 1034.42 1297.72 

Root mean squared error 20.874 19.4843 21.758 34.4363 32.1625 36.0239 

Normalized squared error 3.8492 3.46104 4.157 2.94547 2.58624 3.23308 

Minkowski error 22006 4072.82 4931.6 45101.8 8272.36 10220 

 
In this article, various models such as the Black-Scholes-Merton model, Monte Carlo simulation, 

Heston model, GARCH model, Lattice model, Jump Diffusion model, Normal Inverse Gaussian-Cox-

Ingersoll-Ross model, and Black-Scholes-Artificial Neural Network (BSANN) are used for the 

prediction of European call and put options. We cannot conclude which model is better because each 

model has different qualifications and characteristics. For example, the NIG-CIR option pricing model 

has more parameters. Therefore, this condition can decrease the calculation speed and complicate it. 

However, the results may be more accurate than the others. An important issue is the accurate and 

precise setting of the parameters according to the model. To make informed decisions, it is essential to 

have accurate information about the underlying asset, including factors such as the volatility rate and 

strike price. Additionally, it is important to be familiar with economic conditions such as the inflation 

rate and rate of return. 

 

Table 17 shows the results of option pricing using the different models considered. There are  also some 

assumptions: the interest rate (risk-free-rate) is 0.2, the volatility (𝜎) is 0.42 and the expiration period 

is one year (360 days). The predicted option prices are obtained for each model with different standard 

deviations. 

 

Table 26. Different forecasting models 

Performance (Call option) Performance (Put option)

Option value Standard deviation Strike price Model Rank 
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According to the above table, the BSANN model with the lowest standard deviation has the best 

predictability. However, the GARCH estimation with the highest standard deviation is a relatively 

unsuitable model for predicting options.  

 

Finally, it is important to consider that the options carry more risks. On the other hand, taking more risk 

increases potential returns. Thus, before making any investment, it is important to consider your strategy 

and approach, which includes determining whether you are risk-takers or risk-averse. 

 

5. Conclusion 
5.1 Limitation 

There are some limitations in different terms, such as the choice of underlying asset. It is important to 

pay attention to the availability of sufficient data on the number of share transactions and absence of 

trading halts. Additionally, it is crucial to be careful when selecting an appropriate number of estimated 

parameters. 

 

5.2 Suggestion 

As a recommendation, optimizing artificial intelligence (AI) using metaheuristic algorithms, such as 

the Chimp Optimization Algorithm (ChOA) and the Aquila Optimization Algorithm (AO), can be 

effective and applicable in option price forecasting. AI offers several advantages. 

1. Speed up calculations 

2. Increasing accuracy 

3. Uncomplicated  

 

AI methods do not have any assumptions or hypotheses, making them applicable to any problem. They 

are adaptable to data and complex structures. However, these algorithms can prevent the problem of 

getting stuck in the local minima or maxima.   
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Put Call Put Call Put Call 

235.21 134.63 8.00E-05 5.43E-05 600 200 BSANN 1 

232.98 133.58 0.11 0.11 600 200 Heston Option 2 

130.07 232,96 1.29 0.11 600 200 BOP 3 

128.27 236.88 1.53 0.11 600 200 BSM 4 

233.17 131.10 10.53 10.62 600 200 NIG-CIR 5 

232.38 130.26 12.58 13.35 600 200 Merton's Jump Diffusion 6 

237.72 128.01 16.58 16.35 600 200 Monte Carlo 7 

286.21 181.83 108.44 84.76 600 200 GARCH 8 
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