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Abstract 

Purpose: This research examines the importance of an uplift 

marketing model compared to traditional response models, used in 

direct marketing.  

Research Methodology: A multi-method research approach was 

used which included a survey using an electronic questionnaire and 

a semi-structured interview. 

Results: The research findings reveal that the value of employing 

uplift models in direct marketing. is that it factors change in 

behaviour from the action, which traditional response models do 

not. 

Limitation: The study was conducted in a single institution and 

focused only on scustomers with banking needs. 

Contribution: By employing an uplift model in direct marketing it 

is possible to increase marketing return-on-investment and 

positively impact brand loyalty and brand perception. Thus, 

marketers need to be cognizant of these findings and strategize 

accordingly. 
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1. Introduction 

According to research (Adobe and Microsoft, 2018), 94% of consumers will discontinue their 

relationship with a brand because of irrelevant marketing. While some traditional marketing roles have 

changed or become redundant, the rise in data science and the creation of new marketing channels, such 

as digital marketing, has resulted in the emergence of new marketing roles. An important development 

for marketing professionals is the need to understand the science or analytics and creative processes 

that will be vital in bridging the gap between data and design, which is key to the success of any 

marketing campaign (Lund, 2012). In light of the above, this paper reports the findings of a study 

conducted among a convenience sample of South African banking consumers, to explore the impact of 

uplift models in direct marketing, by addressing the following objectives: 

• To ascertain the effect of Uplift models on marketing return-on-investment (costs and response 

rates). 

• To evaluate the consequence of Uplift models on customer experience and brand loyalty. 

• To compare the impact on customer attrition based on churn risk versus an Uplift model. 
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Flowing from the research objectives, the key questions and sub questions were framed around: What 

are the effects of uplift marketing models on direct marketing costs, response rates, customer experience 

and brand loyalty. 

 

2. Literature review and hypotheses development 

The core function of direct marketing is to generate a response and influence the behaviour of a target 

audience. Thus, every day people are exposed to thousands of marketing messages where companies 

attempt to sell numerous products or services.  In South Africa, in recent years, various pieces of 

legislation have been passed to curb this practice, which necessitates understanding the impact of 

legislation on direct marketing in South Africa. Marketing in South Africa has seen some radical 

changes since the implementation of the Electronic Communications and Transactions Act, No. 25 of 

2002, The Consumer Protection Act, No. 68 of 2008, and The National Credit Act, No. 34 of 2005, and 

as such, businesses had to change the way they interact with clients and how they utilise client data 

(Republic of South Africa, 2009). 

 

The Protection of Personal Information Act, No. 4 of 2013 does not prohibit direct marketing, but it 

regulates how direct marketing is conducted with the primary focus being on protecting the consumer. 

Given the legislations and limited audience that one may be able to market to in the future, predictive 

modelling now plays a key role in the success of marketing campaigns. 

 

Marketing Models 

A predictive model is an instrument that predicts the likelihood that the individual will exhibit the 

predicted behaviour as determined by a score and the higher the score, the higher the likelihood (Siegel, 

2016). A standard predictive model scores customers’ or other organisational elements individually, per 

the likelihood of behaviour, for example, response or attrition. With power shifting to the customer, 

switching of service providers will happen at a more frequent rate, with buying of products from 

multiple providers demonstrating a preference for tailored products and services (EY, 2013). However, 

predicting customer behaviour is no longer enough, and thus conventional predictive analytics is 

limiting, as it predictively scores each customer for projected buying, churn or other behaviour. As an 

alternative, a business decision is optimised when it is based on the predicted marketing influence on 

the customer’s future behaviour.   

 

Since introducing statistical credit scoring in the 1950s, statistical modelling has been applied to various 

problems in customer management and over time, the use of predictive modelling has become 

progressively more sophisticated in customer targeting, when employed in demand stimulation and 

customer retention (Radcliffe & Surry, 2011). For many customers, the choice of which offer or contact 

should be made, often makes the difference between a sale and no sale (Siegel, 2011), and this leads to 

uplift modelling.  

 

Uplift modelling  

‘Uplift modelling is a branch of machine learning which aims to predict not the class itself, but the 

difference between the class variable behaviour in two groups, namely treatment and control. Objects 

in the treatment group have been subjected to some action, while objects in the control group have not. 

By including the control group, it is possible to build a model which predicts the causal effect of the 

action for a given individual’ (Jaroszewicz & Zaniewicz, 2017). An uplift model is also known as the 

differential response, true lift, impact, incremental impact, incremental response, net lift, net response, 

incremental lift, persuasion, or true response model (Larsen, 2010; Rzepakowski and Jaroszewicz, 

2010; Radcliffe and Surry, 2011; Kubiak, 2012; Lund 2012; Nassif, 2013; Nasif, et al., 2013; Guillen 

et al., 2014; Kane et al., 2014; Lo and Pachamanova, 2015; Gubela et al.. 2017).  

 

In business, to drive decisions for greatest impact, analytical models must predict the marketing 

influence of each decision on customer purchasing behaviour.  Uplift modelling improves conventional 
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response, and churn models present significant risk by optimising the wrong product or service.  This 

change is fundamental to empirically driven decision making (Siegel, 2011). Portrait Software (2006) 

highlight numerous benefits of using uplift modelling in the areas of demand generation and customer 

retention, which include inter-alia, reducing costs because of a reduction in  the number of customers 

required to achieve a given level of business stimulation, increasing the level of business generation 

achieved for any given level of spend, lowering customer unhappiness by reducing the level of 

negatively received information, enhancing understanding inside the organisation of the efficacy of 

several kinds of marketing spend, removing many or all the adverse effects related with mis-targeted 

marketing initiatives and reducing customer churn. 

 

There are four qualifying criteria important for evaluating the potential impact of uplift modelling 

(Portrait Software, 2006), namely, control groups, size of the customer base, influences and overall 

level of uplift. Uplift modelling needs the systematic use of randomised control groups and this is 

therefore only of benefit to organisations already using it. Furthermore, reasonable volumes are required 

to model the second-order effect and organisations with large customer bases tend to benefit 

disproportionately more, than those with fewer customers.    

 

Traditional models1 versus uplift models 

Although there are several traditional marketing models, none of the traditional marketing models 

attempted to factor change in behaviour, because of the direct marketing campaign. For example, a 

response model attempts to predict the likelihood that a customer will take up an offer if contacted, 

whereas an uplift model attempts to estimate the increase in the likelihood that a customer may take up 

an offer if contacted, compared with not being contacted, thus modelling the change in behaviour, as 

shown in Table 1.  

 

Table 1: Response model vs. uplift model equation.  

Response Model Uplift Model 

P (O = 1 | 𝒙;T) P (O = 1 | 𝒙;T) - P (O = 1 | 𝒙;C)  

 

In Table 1, the Response model predicts the probability that the outcome (O) is 1 (positive) for those 

customers in the treated group (T), but it does not consider the behaviour from the control group (C). 

An Uplift Model considers the change, such as an increase in probability when customers are treated 

versus not being treated.  

 

Jaroszewicz and Rzepkowski (2012) and Jaroszewicz and Jaroszewicz (2012), explain that customers 

can be segmented into four groups. However, traditional models such as Response models are not able 

to segment the customers, given that traditional models do not attempt to factor the change in behaviour, 

which an uplift model does. What traditional models do not consider are those customers who would 

have responded or purchased if there was no marketing campaign, which in turn results in wasted costs 

that negatively impact net profits or the return on investment 

 

Uplift modelling in direct marketing 

The usefulness of employing uplift models in direct marketing is that it factors the change in behaviour 

from the action, which enables marketers to strategically direct their marketing efforts.  Figure 1 

displays a summary of the usefulness of employing uplift models in direct marketing.  The purpose of 

this paper is not to engage into a discussion of various marketing models, but to merely mention some 

of the traditional models so as to differentiate them from Uplift marketing model. 
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Figure 1: The usefulness of employing an uplift model in direct marketing  

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Adapted from Jaroszewicz & Rzepakowski (2012) and Siegel (2016) 

 

Although current market penetration and purchase models do not attempt to link the purchase result 

with the marketing activity designed to stimulate the activity, they are deemed to be more sophisticated, 

in that they attempt to correlate the purchase result with the marketing activity.  However, the problem 

emerges when one tries to separate the impact of the action from other factors and spontaneous 

purchases. Thus, to separate the impact of the action from other factors and impulsive buying, one 

should model the change in those probabilities caused by the action as opposed to the response 

probabilities themselves. 

 

Several researchers (Guillen et al., 2014; Kane et., 2014; Lo and Pachamanova, 2015; Gubela et al.,  

2017), have implemented Uplift marketing modelling in various context, inter-alia, insurance, finance, 

patient care, online merchandise and retail domains. However, no evidence exists of research being 

conducted in a direct marketing context. 

 

In light of the above, this research aims to compare uplift and traditional response models in direct 

marketing, by investigating the processes and impact of employing traditional response models in direct 

marketing versus uplift models.   

 

3. Research methodology  

A mixed methods study was conducted, which incuded a survey as well as focus group interviews. The 

data was collected using a self-administered questionnaire transmitted via Survey Monkey. The 

questionnaire was distributed electronically to a convenience sample (41 participants) via an email link 

to the survey. In addtion, personal interviews were conducted with nine (9) respondents, using and 

unstructured questionnaire. This approach is in line with Saunders et al.’s (2016) guidelines for the 

minimum non-probability sample size.  

 

The population comprised economically active individuals who were in a position financially, to take 

up the respective products or solutions that an organisation is marketing. Therefore, participant 

sampling was conducted using the purposive sampling (non-probability) method. 

 

The email request for participation included the reason for the survey and a brief overview of the 

research aim and objectives of the study. The questionnaire was divided into three sections, namely: 
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 Section1: Demographics. 

 Section 2: Questions which aimed at understanding the impact of irrelevant marketing on the buyer; 

for example the relationship with the brand and product take-up. 

 Section 3: Questions pertaining to factors that influenced buying decisions and customer 

experience. 

 

In sections 2 and 3, 5-point Likert scale questions were used. An example is provided below: 

 

Indicate how likely are you to take up a product from a contextual or relevant marketing campaign?  

For example, if you are looking at buying a house and you receive a home loan offer versus 

receiving a home loan offer when you are not in the market to buy a house. 

1 2 3 4 5 

Very likely Likely  Neither likely nor 

unlikely 

Unlikely Very unlikely 

 

Construct validity of the questionnaire was assured by conducting a pilot study among a group of five 

colleagues at the researcher’s place of employment. Since the questions were developed from previous 

studies (Kubiak, 2012; Larsen, 2010), this was taken as assurance of the validity and reliability of the 

questionnaire. 
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4. Results and discussions 

Table I reflects a summary of survey responses to the survey.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1:Summary of Responses 
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Table 2 below is a summary of the thematic analysis of the focus group study using a semi-structured 

interview method.  

 

Table 2: Thematic analysis of the study based on the semi-structured interviews 
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Based on the information captured in Table 2, the researcher identified three themes, namely, 

expectation or perception of the service provider; buying is influenced by how they feel and what they 

need; and breakdown in a relationship happens when there is no longer a value exchange. Further 

analysis of the data presented the following overarching theme, namely, the desire for personalisation 

or contextual engagements, which translates to “taking time to understand who I am; I am more than 

just a customer number and be there for me when I need you, in both the good times and the bad.” The 

benefit of the above dynamic in a relationship is that it builds trust and results in a value exchange that 

is beneficial for both parties.  

 

Theme 1: Expectation of the Service Provider 

Personalisation was a recurring theme that emerged from the feedback from all participants. It can 

therefore be concluded that: 

 Consumers want personalisation and they expect this from the organisations with which they 

conduct business.  

 There is a relationship between personalisation and brand loyalty. 

 Consumers also expect that the personalisation is contextual and happens as close to the trigger 

event or even in real-time. 

 Irrelevant engagements result in a negative perception of the brand and possible customer attrition. 

 Consumers expect human intervention when required; even with the increase in technology.  

 

Theme 2: Buying is influenced by how they feel and what they need 

On the basis of the data analysis, it was concluded that contextual engagements and brand perception 

play a crucial role in driving purchase decisions.  Therefore, it is clear that: 

 Engaging consumers at a time when the product or solution is not relevant, will result in wasted 

marketing expenditure. 

 Referrals from family and friends influence consumers’ buying decisions more than marketing 

campaigns. 

 Trust is a pre-requisite in the buying process.  

 Customers will not enter a transactional relationship with an organisation if they think the 

organisation does not understand their needs. 

 Emotional connections with organisations influence the buying decision.    

 

Theme 3: Breakdown in a relationship happens when there is no longer a value exchange 

It was also concluded that the requirement for a long-term business relationship is a continued exchange 

of value, manifesting itself in terms of the following: 

 Consumers will exit a relationship if the cost of doing business with an organisation exceeds the 

value they derive from the relationship.  

 Poor service remains a key reason for customer attrition.  

 When there is no longer an exchange of value, no amount of marketing initiatives can reactivate a 

customer.  

 Trust is an important human value.  

 

Discussion  

Jaroszewicz and Rzepakowski’s (2012) research demonstrates that when applying Uplift models, 

customers can be segmented into four groups, and this cannot be achieved through traditional models. 

Siegel (2016) highlights that an Uplift model predicts each prospective customer placement within the 

four conceptual segments, thus supporting the views of Jaroszewicz and Rzepakowski (2012).   
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The four conceptual segments are: 

 Do Not Disturb: Contacting these prospects will have a negative reaction. 

 Lost Causes: Will not take-up an offer whether contacted or not. 

 Sure Things: Will take-up the offer whether contacted or not. 

 Persuadables: Will have a positive reaction to the contact as they will only take up an offer as a 

result of the interaction.  

 

Since product-centric engagements do not cultivate customer loyalty, it is recommended that 

organisations develop a clear and focused customer engagement strategy. Uplift models cultivate brand 

loyalty which is critical to business success, and it will predict each prospective customer placement 

within four conceptual segments. This allows organisations to strategically drive their engagement 

strategies, based on the quadrant in which the customer is segmented.   

 

If based on the data analysis process using a traditional response model, a bank customer is identified 

as having a high propensity to take up a credit card, then a marketing message should directed to him/ 

her.  However, when one overlays an uplift model, the customer could be segmented within the ‘Lost 

Cause’ quadrant, meaning that this customer will not take-up this product even if engaged with. 

Marketers with a product-centric approach will market the credit card given the high propensity for take 

up, and an Uplift model will apply a customer-centric approach by not marketing to this customer. 

 

Radcliffe and Surry (2011), who appear to be the first to model the incremental impact that a marketing 

campaign will have on a customer’s behaviour, found that applying an Uplift modelling approach to 

direct marketing can positively impact marketing return-on-investment.  

 

Trust determines comfort level and is therefore a key enabler for business success, by becoming both a 

commodity and a requirement for consumers intending to conduct business with an organisation.  Trust 

can be achieved through focused relationships with existing clients, enabled through understanding their 

needs and proposing solutions for those needs. An analysis of client needs is enabled through 

behavioural analytics and marketing strategies by employing an Uplift model.  

 

Despite the value of Uplift modelling in direct marketing, Yue (2013) highlights four challenges in 

using Uplift modelling, compared with traditional propensity models, namely: 

 at an individual level, one cannot determine who provided the incremental value, and thus the 

Uplift impact of a specific marketing campaign can only be observed at the population level.  

 when compared with gross propensity models, an Uplift model is more volatile, resulting in the 

need for two additional inputs, namely; Uplift percent due to the market treatment vs. non-

market treatment.  

 it requires a better planned sampling strategy when compared with the propensity model setup 

and, requires both randomised treatment groups and control groups. Uplift model results often 

show counterintuitive results when compared with propensity models and sometimes the best 

customer segment in propensity models is the worst segment, identified by Uplift modelling.  

 

Recommendations  

Marketers must shift from campaigns which were historically a ‘spray and pray’ approach to 

conversations or interactions, which will provide a prospect or customer with the ability to engage with 

an organization.  Contextual engagements result in dialogue and lead to a relationship-orientated mind-

set that drives brand engagement and loyalty. It is recommended that organisations enable this through 

changing the point of departure by adapting current marketing strategies from campaigns to interactions 

and recognising that behavioural data empowers contextual interactions, by identifying key customer 
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moments. The usefulness of employing an Uplift model in this context is that it supports  an 

organisation’s marketing strategy and highlights opportunity segments. 

 

It would be assumed that staff occupying customer relationship management roles are normally selected 

for their personality. However, it is also recommended that training in what is a constantly evolving 

environment, be reviewed to ensure that it addresses behavioural changes resulting from the ever-

changing societal norms and pressures.  

 

Contextual marketing in an era where consumers are more connected than ever before and where they 

expect brands to understand their needs, is no longer an option but a necessity, for brands to remain 

relevant and gain an advantage over their competitors.   

 

5. Conclusion 

An uplift model predicts each prospective customer placement within four conceptual segments and 

each segment informs the marketing strategy and action that will resul.  Figure 1 articulates the four 

segments and the type of customer it identifies; this will drive a marketer’s engagement strategy. 

Marketing return-on-investment increases as targeting the ‘’Persuadables’’ reduces marketing costs, 

given the reduction in the target market size, due to the exclusion of the remaining three segments.  

Response rates increase for the same reason, coupled with the probability that the customer will only 

take up an offer as a result of the action. Customer experience increases since targeting the 

‘Persuadables’ drives contextual engagements and removing the ‘Do Not Disturb’ segment mitigates 

the potential negative effect, such as customer complaints and attrition. 

Uplift marketing can reduce marketing costs, since an Uplift model identifies a segment called 

Persuadables, where engagement will have a positive reaction as the consumer will only take-up an 

offer as a result of the interaction.  This reduces marketing costs as marketers do not have to spend 

money on targeting customers who fall in the remaining three segments depicted in Figure 1. 

 

6. Limitation and study forward  
The study was conducted in a financial institution (bank) which offers credit cards and similar products 

via direct marketing. For the framework to be more generalizable, different samples representing 

different products should be incorporated in future studies. This study was based on a qualitative 

research approach and possible future research can be based on applying an Uplift model to the data set 

for a marketing initiative.  The conclusions also highlight the potential for further in-depth research on 

a number of critical areas; for example, including trust-related variables in Uplift model development. 
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