Using Copper-Coated Round Rod Electrodes at Various Depths in Freshwater Marshes

Published: Dec 7, 2022

Abstract:

Purpose: High-voltage electrical equipment requires a grounding installation in order to protect lives in freshwater swamps with a hydrogen potential of 6.75. To build a grounding structure, it is required to know the resistance value and grounding materials, namely copper-coated rod electrodes at different depths.

Research methodology: The research was conducted in a freshwater swamp close to the shampooing substation using field observations and direct measurement of soil resistance values, followed by a literature review and comparisons using COMSOL simulation and FEM Analysis.

Results: The results of direct research and simulations indicate that in order to accomplish a grounding resistance value < 5 ohms according to the PUIL 2011 standard for a single rod system made of copper, it is necessary to optimize the depth of the grounding electrode within a range of 10 meters, which differs from the simulation results of ground resistance measurement and the Comsol application. The percentage error is 1.05%.

Limitations: This research analyzes the results of measurements and grounding analysis using Comsol Multiphysics at a depth of 1 meter for a particular type of copper-coated round rod electrode at depths of 1, 1.5, and 2 meters.

Contributions: The results of the study offer information on the usefulness of grounding resistance in freshwater wetlands with a pH greater than 6, where several rod electrode types are utilized to compare future research.

Keywords:
1. Grounding Resistance
2. Freshwater Swamp Land (Marshes)
3. Comsol Multiphysic
4. Rod Electrodes
Authors:
1 . Dian Eka Putra
2 . Zainuddin Nawawi
3 . Muhammad Irfan Jambak
How to Cite
Putra, D. E., Nawawi, Z., & Jambak, M. I. (2022). Using Copper-Coated Round Rod Electrodes at Various Depths in Freshwater Marshes. Journal of Applied Research Technology, 2(1), 15–26. https://doi.org/10.35912/jart.v2i1.1245

Downloads

Download data is not yet available.
Issue & Section
References
  1. Adnan, M., Abdul-Malek, Z., Din, N. S. M., Jambak, M. I., Nawawi, Z., & Sidik, M. A. B. (2020). Effects of lightning impulse front time on substation grounding system performance. Indonesian Journal of Electrical Engineering and Computer Science, 20(2), 569–574. https://doi.org/10.11591/ijeecs.v20.i2.pp569-574
  2. Ali, A. W. A., Ahmad, N. N., & Nor, N. M. (2020). Effects of impulse polarity on grounding systems. 7th IEEE International Conference on High Voltage Engineering and Application, ICHVE 2020 - Proceedings, December. https://doi.org/10.1109/ICHVE49031.2020.9279482
  3. Andi, K., Kusumanto, R., & Yusi, S. (2022). IoT Monitoring for PV System Optimization in Hospital Environment Application. 1(1), 1–8.
  4. Androvitsaneas, V. P., Damianaki, K. D., Christodoulou, C. A., & Gonos, I. F. (2020). Effect of soil resistivity measurement on the safe design of grounding systems. Energies, 13(12). https://doi.org/10.3390/en13123170
  5. Batista, R., Louro, P. E. B. B., & Paulino, J. O. S. (2021). Lightning performance of a critical path from a 230-kV transmission line with grounding composed by deep vertical electrodes. Electric Power Systems Research, 195, 107165. https://doi.org/10.1016/j.epsr.2021.107165
  6. Batista, R., & Paulino, J. O. S. (2019). A practical approach to estimate grounding impedance of a vertical rod in a two-layer soil. Electric Power Systems Research, 177, 105973. https://doi.org/10.1016/j.epsr.2019.105973
  7. Camara, M., Atalar, F., & Y?lmaz, A. E. (2020). A new grounding cake to improve the safety performance of grounding systems. Journal of Electrostatics, 108, 103521. https://doi.org/10.1016/j.elstat.2020.103521
  8. Ghomi, M., Zhang, H., Leth Bak, C., Faria da Silva, F., & Yin, K. (2021). Integrated model of transmission tower surge impedance and multilayer grounding system based on full-wave approach. Electric Power Systems Research, 198, 107355. https://doi.org/10.1016/j.epsr.2021.107355
  9. Hu, H., Fang, M., Hu, F., Zeng, S., & Deng, X. (2021). A new design of substation grounding based on electrolytic cathodic protection and on transfer corrosion current. Electric Power Systems Research, 195. https://doi.org/10.1016/j.epsr.2021.107174
  10. IEEE Std 80. (2000). Standard 80-2000 Guide for Safety in AC substation gorunding. In The institute of electrical and electonics engineers (Vol. 56).
  11. IEEE Std 81. (2012). IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System. In IEEE Std 81-2012 (Revision of IEEE Std 81-1983) - Redline (Vol. 2012, Issue December).
  12. Ilomuanya, C. S., Nekahi, A., & Farokhi, S. (2019). Acid Rain Pollution Effect on the Electric Field Distribution of a Glass Insulator. ICHVE 2018 - 2018 IEEE International Conference on High Voltage Engineering and Application, February. https://doi.org/10.1109/ICHVE.2018.8642231
  13. Ishiwu, C. N., Nnanwube, I. A., Nkem, J. O., & Ezegbe, C. C. (2020). Investigation of Functional and Sensory Properties of Plantain Flour in Citric Acid. 1(1), 27–47.
  14. Lembang, N., Manjang, S., & Kitta, I. (2018). The Effect of Grounding Resistance about Back Flashover on 150 KV Tranmission Network in Main Station of Sungguminasa - Tallasa (Makassar). Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1090/1/012077
  15. ?ukaszewski, A., & Nogal, ?. (2021). Influence of lightning current surge shape and peak value on grounding parameters. Bulletin of the Polish Academy of Sciences: Technical Sciences, 69(2), 1–8. https://doi.org/10.24425/bpasts.2021.136730
  16. Malanda, S. C., Davidson, I. E., Singh, E., & Buraimoh, E. (2018). Analysis of Soil Resistivity and its Impact on Grounding Systems Design. 2018 IEEE PES/IAS PowerAfrica, PowerAfrica 2018. https://doi.org/10.1109/PowerAfrica.2018.8520960
  17. Nasir, N. A. F. M., Ab Kadir, M. Z. A., Osman, M., Abd Rahman, M. S., Ungku Amirulddin, U. A., Mohd Nasir, M. S., Zaini, N. H., & Nik Ali, N. H. (2021). Effect of earthing enhancing compound (EEC) on improving tower footing resistance of a 500 kV tower in a rocky area. Applied Sciences (Switzerland), 11(12). https://doi.org/10.3390/app11125623
  18. PLN. (1993). Tentang Elektoda Bumi Jenis Batang Bulat Berlapis Tembaga. September.
  19. PUIL, 2000. (2000). Persyaratan Umum Instalasi Listrik 2000 (PUIL 2000). DirJen Ketenagalistrikan, 2000(Puil), 1–133.
  20. Putra, D. E., Y, D. S., Sukarta, E., Studi, P., Elektro, T., & Palembang, U. (2022). Evaluasi Resistivitas Tanah dan Resistansi Pentanahan Pada Lahan Tanah Pasir Basa Evaluastion VALUATION OF SOIL RESISTIVITY AND GROUNDING RESISTANCE IN BASE SAND SOIL. 7(1), 9–14.
  21. Salam, M. A., Rahman, Q. M., Ang, S. P., & Wen, F. (2017). Soil resistivity and ground resistance for dry and wet soil. Journal of Modern Power Systems and Clean Energy, 5(2), 290–297. https://doi.org/10.1007/s40565-015-0153-8
  22. Sriwijaya, U., & Palembang, U. (2021). INVESTIGASI KINERJA RESISTANSI PENTAHANAN (GROUNDING) PADA LAHAN RAWA TIMBUN Dian Eka Putra 1 , Raden Ahmad Yani 2. 5, 1–6.
  23. Tiimub, B. M., Christophé, N., Atepre, B. A., Tiimob, R. W., Tiimob, G. L., Tiimob, E. N., Baani, I., Amihere-Ackah, P., & Agyenta, J. J. (2020). Crop production potential of reclaimed mine sites for sustainable livelihoods. Journal of Applied Research Technology, 1(1 SE-Articles), 1–15. https://doi.org/10.35912/jart.v1i1.296
  24. Umum, P., & Listrik, I. (2011). Puil 2011. 2011.
  25. Yan, W., An, Y., Hu, Y., Jiang, Z., Gao, X., & Zhou, L. (2021). Research on cylinder Flexible Graphite Earth Electrode (FGEE) used to reduce tower earth resistance. Electric Power Systems Research, 196. https://doi.org/10.1016/j.epsr.2021.107268