Using Copper-Coated Round Rod Electrodes at Various Depths in Freshwater Marshes
Abstract:
Purpose: High-voltage electrical equipment requires a grounding installation in order to protect lives in freshwater swamps with a hydrogen potential of 6.75. To build a grounding structure, it is required to know the resistance value and grounding materials, namely copper-coated rod electrodes at different depths.
Research methodology: The research was conducted in a freshwater swamp close to the shampooing substation using field observations and direct measurement of soil resistance values, followed by a literature review and comparisons using COMSOL simulation and FEM Analysis.
Results: The results of direct research and simulations indicate that in order to accomplish a grounding resistance value < 5 ohms according to the PUIL 2011 standard for a single rod system made of copper, it is necessary to optimize the depth of the grounding electrode within a range of 10 meters, which differs from the simulation results of ground resistance measurement and the Comsol application. The percentage error is 1.05%.
Limitations: This research analyzes the results of measurements and grounding analysis using Comsol Multiphysics at a depth of 1 meter for a particular type of copper-coated round rod electrode at depths of 1, 1.5, and 2 meters.
Contributions: The results of the study offer information on the usefulness of grounding resistance in freshwater wetlands with a pH greater than 6, where several rod electrode types are utilized to compare future research.
Downloads

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Adnan, M., Abdul-Malek, Z., Din, N. S. M., Jambak, M. I., Nawawi, Z., & Sidik, M. A. B. (2020). Effects of lightning impulse front time on substation grounding system performance. Indonesian Journal of Electrical Engineering and Computer Science, 20(2), 569–574. https://doi.org/10.11591/ijeecs.v20.i2.pp569-574
- Ali, A. W. A., Ahmad, N. N., & Nor, N. M. (2020). Effects of impulse polarity on grounding systems. 7th IEEE International Conference on High Voltage Engineering and Application, ICHVE 2020 - Proceedings, December. https://doi.org/10.1109/ICHVE49031.2020.9279482
- Andi, K., Kusumanto, R., & Yusi, S. (2022). IoT Monitoring for PV System Optimization in Hospital Environment Application. 1(1), 1–8.
- Androvitsaneas, V. P., Damianaki, K. D., Christodoulou, C. A., & Gonos, I. F. (2020). Effect of soil resistivity measurement on the safe design of grounding systems. Energies, 13(12). https://doi.org/10.3390/en13123170
- Batista, R., Louro, P. E. B. B., & Paulino, J. O. S. (2021). Lightning performance of a critical path from a 230-kV transmission line with grounding composed by deep vertical electrodes. Electric Power Systems Research, 195, 107165. https://doi.org/10.1016/j.epsr.2021.107165
- Batista, R., & Paulino, J. O. S. (2019). A practical approach to estimate grounding impedance of a vertical rod in a two-layer soil. Electric Power Systems Research, 177, 105973. https://doi.org/10.1016/j.epsr.2019.105973
- Camara, M., Atalar, F., & Y?lmaz, A. E. (2020). A new grounding cake to improve the safety performance of grounding systems. Journal of Electrostatics, 108, 103521. https://doi.org/10.1016/j.elstat.2020.103521
- Ghomi, M., Zhang, H., Leth Bak, C., Faria da Silva, F., & Yin, K. (2021). Integrated model of transmission tower surge impedance and multilayer grounding system based on full-wave approach. Electric Power Systems Research, 198, 107355. https://doi.org/10.1016/j.epsr.2021.107355
- Hu, H., Fang, M., Hu, F., Zeng, S., & Deng, X. (2021). A new design of substation grounding based on electrolytic cathodic protection and on transfer corrosion current. Electric Power Systems Research, 195. https://doi.org/10.1016/j.epsr.2021.107174
- IEEE Std 80. (2000). Standard 80-2000 Guide for Safety in AC substation gorunding. In The institute of electrical and electonics engineers (Vol. 56).
- IEEE Std 81. (2012). IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System. In IEEE Std 81-2012 (Revision of IEEE Std 81-1983) - Redline (Vol. 2012, Issue December).
- Ilomuanya, C. S., Nekahi, A., & Farokhi, S. (2019). Acid Rain Pollution Effect on the Electric Field Distribution of a Glass Insulator. ICHVE 2018 - 2018 IEEE International Conference on High Voltage Engineering and Application, February. https://doi.org/10.1109/ICHVE.2018.8642231
- Ishiwu, C. N., Nnanwube, I. A., Nkem, J. O., & Ezegbe, C. C. (2020). Investigation of Functional and Sensory Properties of Plantain Flour in Citric Acid. 1(1), 27–47.
- Lembang, N., Manjang, S., & Kitta, I. (2018). The Effect of Grounding Resistance about Back Flashover on 150 KV Tranmission Network in Main Station of Sungguminasa - Tallasa (Makassar). Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1090/1/012077
- ?ukaszewski, A., & Nogal, ?. (2021). Influence of lightning current surge shape and peak value on grounding parameters. Bulletin of the Polish Academy of Sciences: Technical Sciences, 69(2), 1–8. https://doi.org/10.24425/bpasts.2021.136730
- Malanda, S. C., Davidson, I. E., Singh, E., & Buraimoh, E. (2018). Analysis of Soil Resistivity and its Impact on Grounding Systems Design. 2018 IEEE PES/IAS PowerAfrica, PowerAfrica 2018. https://doi.org/10.1109/PowerAfrica.2018.8520960
- Nasir, N. A. F. M., Ab Kadir, M. Z. A., Osman, M., Abd Rahman, M. S., Ungku Amirulddin, U. A., Mohd Nasir, M. S., Zaini, N. H., & Nik Ali, N. H. (2021). Effect of earthing enhancing compound (EEC) on improving tower footing resistance of a 500 kV tower in a rocky area. Applied Sciences (Switzerland), 11(12). https://doi.org/10.3390/app11125623
- PLN. (1993). Tentang Elektoda Bumi Jenis Batang Bulat Berlapis Tembaga. September.
- PUIL, 2000. (2000). Persyaratan Umum Instalasi Listrik 2000 (PUIL 2000). DirJen Ketenagalistrikan, 2000(Puil), 1–133.
- Putra, D. E., Y, D. S., Sukarta, E., Studi, P., Elektro, T., & Palembang, U. (2022). Evaluasi Resistivitas Tanah dan Resistansi Pentanahan Pada Lahan Tanah Pasir Basa Evaluastion VALUATION OF SOIL RESISTIVITY AND GROUNDING RESISTANCE IN BASE SAND SOIL. 7(1), 9–14.
- Salam, M. A., Rahman, Q. M., Ang, S. P., & Wen, F. (2017). Soil resistivity and ground resistance for dry and wet soil. Journal of Modern Power Systems and Clean Energy, 5(2), 290–297. https://doi.org/10.1007/s40565-015-0153-8
- Sriwijaya, U., & Palembang, U. (2021). INVESTIGASI KINERJA RESISTANSI PENTAHANAN (GROUNDING) PADA LAHAN RAWA TIMBUN Dian Eka Putra 1 , Raden Ahmad Yani 2. 5, 1–6.
- Tiimub, B. M., Christophé, N., Atepre, B. A., Tiimob, R. W., Tiimob, G. L., Tiimob, E. N., Baani, I., Amihere-Ackah, P., & Agyenta, J. J. (2020). Crop production potential of reclaimed mine sites for sustainable livelihoods. Journal of Applied Research Technology, 1(1 SE-Articles), 1–15. https://doi.org/10.35912/jart.v1i1.296
- Umum, P., & Listrik, I. (2011). Puil 2011. 2011.
- Yan, W., An, Y., Hu, Y., Jiang, Z., Gao, X., & Zhou, L. (2021). Research on cylinder Flexible Graphite Earth Electrode (FGEE) used to reduce tower earth resistance. Electric Power Systems Research, 196. https://doi.org/10.1016/j.epsr.2021.107268