

The influence of Internal Values, Green Attitudes, Subjective Norms, and on Green Customer Citizenship Behaviours among electric vehicle consumers in Jakarta

Tengku Muhammad Zikrie Maulana¹, Heri Fathurahman²

University of Indonesia, Depok, Jawa Barat, Indonesia^{1,2}

tengku.muhammad11@ui.ac.id¹, heri.fathurahman09@ui.ac.id²

Article History

Received on 5 July 2025

1st Revised on 8 August 2025

Accepted on 30 August 2025

Abstract

Purpose: This study aims to analyse the influence of Internal Values, Green Attitudes, and Subjective Norms on Green Customer Citizenship Behaviours (GCCB) among electric vehicle (EV) consumers in Jakarta, with a particular focus on the mediating role of green attitudes.

Research Methodology: A quantitative research design was employed using Partial Least Squares–Structural Equation Modelling (PLS-SEM) with SmartPLS version 4.0. Data were collected through an online questionnaire from 105 electric vehicle users domiciled in Jakarta, aged at least 18 years, and having used electric vehicles for more than twelve months.

Results: The findings reveal that internal values have a positive and significant effect on green attitudes. Furthermore, green attitudes significantly influence green customer citizenship behaviour and were found to mediate the relationship between internal values and GCCB. In addition, subjective norms have a significant positive effect on both green attitudes and green customer citizenship behaviour, indicating the importance of social influence in encouraging pro-environmental behaviours among EV consumers.

Conclusions: This study concludes that internal values and subjective norms play a crucial role in shaping green attitudes, which subsequently foster green customer citizenship behaviour among electric vehicle users in Jakarta.

Limitations: The study is limited by its relatively small sample size and its focus on a single urban area, which may limit generalisability.

Contribution: This research contributes empirical evidence to the literature on sustainable consumer behaviour by highlighting the mediating role of green attitudes and the importance of social norms in promoting green customer citizenship behaviour in the context of electric vehicle adoption.

Keywords: *Electric Vehicle Consumers, Green Attitudes, Green Customer Citizenship Behaviours, Internal Values, Subjective Norms*

How to Cite: Maulana, T. M. Z., & Fathurahman, H. (2025). The influence of Internal Values, Green Attitudes, Subjective Norms, and on Green Customer Citizenship Behaviours among electric vehicle consumers in Jakarta. *Journal of Digital Business and Marketing*, 1(2), 157-169.

1. Introduction

Indonesian population and economy growing, the demand for vehicles will surely increase following this growth. Even though this demand will rise, the oil production in Indonesia will substantially decline. This is due to there being an imbalance in the oil supply and this demand appears both as a

challenge and an opportunity for new vehicle technologies that may help bring economic development benefits (Salsabila & Salehudin, 2023; Yansah, Maulana, & Shihab, 2025). Indonesia's rapid economic growth has often prioritized industrialization over environmental protection, leading to significant degradation. In Jakarta, this has manifested through increasing air pollution, deforestation, and traffic congestion. As a result, there is a pressing need for sustainable urban mobility solutions that can reduce environmental harm and improve quality of life in the city (Wahyuningtyastuti & Ariyanti, 2025; Yahman & Setyagama, 2023).

In Indonesia, there is an increasing concern about purchasing patterns because of demographic dividends. While there are numerous studies exploring green consumption behaviour in various contexts, there is a gap in understanding drivers and barriers towards green consumer behaviour in Indonesia, particularly in the country's unique demographic dividend and environmental challenges (Iqbal, Saraswati, Sutrisno, & Tojibussabirin, 2024). The awareness towards the protection of the environment is increasing, this can be seen from the creation of earth day, biking to work, car free day, and other movements that help preserve the environment and healthy life (Glazener, Wylie, van Waas, & Khréis, 2022). Even though the awareness towards the environment is increasing, the information regarding green consumer behaviour in Indonesia is still relatively lower than in other countries that have cared more for the environment (Utami, Yuniaristanto, & Sutopo, 2020).

To overcome dependency on oil and coal that worsens the environment, electric vehicles or electric vehicles (Stahl & Maznevski) are an important step in reducing the environmental problems of transportation that uses electric batteries as energy, and many countries have considered this technology (Alanazi, 2023). In Indonesia, to overcome this environmental situation the government is preparing to welcome this transition by preparing a low-emission vehicle acceleration program, preparing a financial and non-financial support towards electric vehicles, and developing a new strategy to support the development of low-carbon vehicles (LCEV) (Sasongko, Ciptomulyono, Wirjodirdjo, & Prastawa, 2024). The government is actively providing ways towards adopting electric vehicles and several studies have shown that electric vehicles are much more efficient and environmentally friendly (Devi, Arafat, & Maliah, 2025; Solekah, Ratnasari, & Hirmawan, 2023).

Jakarta, or the Special Capital Region of Jakarta, is the capital of Indonesia, the largest city in the country and one of the most populous urban agglomerations on Earth (Edelman & Gunawan, 2020). This city is located on the coast of Java with its population breaking 11 million in 2020 (Indonesian Statistics Bureau, 2020) and is now considered a global city with one of the fastest growing economies in the world. In Jakarta, the adoption of electric vehicles can bring numerous benefits. It has the potential to reduce pollution. According to a report by the World Health Organization (2018), air pollution in Jakarta has exceeded the national air quality standards leading to adverse health effects on its residents. By transitioning to electric vehicles, the emissions of greenhouse gases and air pollutants can be reduced and improve the air quality in Jakarta (Liang, Barus, Ong, & Maharani, 2024).

The average car sales in Indonesia was 65,650 per month in the past year. Within this number, electric vehicle numbers still account for very low numbers. In 2024, within 865,723 car sales, only 4,98% (43,113) are electric vehicles. The reason for low sales in electric vehicles could be looked into through different research. According to Gaikindo, 2024, it is mentioned that the reason for low sales in electric vehicles in Indonesia is the insufficient public charging stations that are available. Bloomberg New Energy reported that by 2040, sales of cars are likely to account for 57% of all electric vehicles (Wulandari & Haryono, 2025).

This prediction emphasises how electric cars have the power to revolutionise the transportation industry and lessen the environmental harm caused by cars with conventional internal combustion engines. Indonesia's electric vehicle (EV) market is experiencing an electrifying boom, with the number of EVs multiplying a staggering 14 times in just two years. From 2,167 units in 2020, 7,498 in 2021, which then had a breathtaking 344.27% leap into 33,461 EVs in 2022. While the total electric cars only account for 7,679 of the total 33,461, this rapid transition to cleaner transportation bodes well for Indonesia's air quality, energy, efficiency, and climate commitment. The Indonesian government also targets the

number of electric vehicle cars to 2.2 million by 2030 (Liang et al., 2024; Wahyuningtyastuti & Ariyanti, 2025).

Jakarta, as the capital of one of the most populated countries, Indonesia, still grapples with environmental issues that range from fossil fuel dependence to air pollution. Adoption of electric vehicles (Stahl & Maznevski) are positioned as one of the solutions. Nonetheless, electric vehicles (Stahl & Maznevski) adoption is very limited and makes it essential to understand what truly drives or hinders consumer participation in sustainable mobility. A significant issue lies not only on the low adoption rate of electric vehicles (Stahl & Maznevski), but also the active consumer engagement in promoting sustainable behaviour. This is what is known as Green Customer Citizenship Behaviour (GCCB), the voluntary act to help others adopt sustainable choices, give feedback, or advocate towards green products. This research aims to analyse the influence of Internal Values, Green Attitudes and Subjective Norms on Green Customer Citizenship Behaviours Among Electric Vehicle Consumers in Jakarta (Rudiyanto & Sudrajad, 2025).

2. Literature review

This research model is adapted from Tonder, Fullerton, Beer, and Saunders (2023), who explained the psychological and social factors that influence green customer citizenship behavior (GCCB). The model is grounded in the Value-Attitude-Behavior Hierarchy (VABH) and Theory of Planned Behavior (TPB), combining internal values, subjective norms, and green attitudes to explain consumer behavior in an environmentally responsible.

Figure 1. Structural Model with SmartPLS 4.0, 2025

The operationalization of concepts in this research is adapted from the measurement scales used by Tonder et al. (2023), who explained green customer citizenship behaviour and its antecedents. It employs a structured questionnaire using items measured on a 5-point Likert scale which defines 1 as strongly disagree and 5 as strongly agrees, by using an interval statistical scale.

Table 1. Operationalization of Concepts

Concept	Variable	Indicators and Abbreviations
Personal Values	Internal Values	<ol style="list-style-type: none"> 1. The individual tends to feel self-fulfilled when making decisions that align with their values (IV_1). 2. The individual demonstrates a strong need to maintain integrity and act in line with their moral principles in an environmental way (IV_2). 3. The individual feels accomplished when contributing to environmental or socially beneficial outcomes (IV_3)

Environmental Attitude	Green Attitudes	<ol style="list-style-type: none"> 1. The individual perceives electric vehicle purchases as a valuable personal decision (GA_1). 2. The individual believes that purchasing an electric vehicle brings personal and social rewards (GA_2). 3. The individual considers buying an electric vehicle to be a smart and rational choice (GA_3).
Social Influence	Subjective Norms	<ol style="list-style-type: none"> 1. The individual provides suggestions to improve electric vehicle products or services (SN_1). 2. The individual offers praise or positive feedback to companies offering good electric vehicles (SN_1). 3. The individual informs the company when noticing issues with their electric vehicle product (SN_1).
	Green Customer Citizenship Advocacy	<ol style="list-style-type: none"> 1. Respondents have recommended companies that sell electric vehicle to others (CCB_A1). 2. Respondents have expressed positive opinions about companies that sell electric vehicle (CCB_A2). 3. Respondents have encouraged others, including friends or family, to purchase electric vehicles from specific companies (CCB_A3).
Green Customer Citizenship Behaviour	Green Customer Citizenship Feedback	<ol style="list-style-type: none"> 1. Respondents share useful ideas for improving the quality of electric vehicle with company employees (CCB_FB1). 2. Respondents provide positive feedback to the company and its employees when satisfied with electric vehicle quality (CCB_FB2). 3. Respondents report issues or problems related to electric vehicles to the company's employees (CCB_FB3).
	Green Customer Citizenship Helping	<ol style="list-style-type: none"> 1. Respondents assist other customers when help is needed during the electric vehicle purchasing process (CCB_H1). 2. Respondents provide help to customers who appear to have difficulties in purchasing electric vehicle (CCB_H2). 3. Respondents educate other customers on how to purchase electric vehicles (CCB_H3). 4. Respondents offer advice to other customers regarding the purchase of electric vehicles (CCB_H4).

Source: Tonder et al. (2023)

3.1. Research Hypothesis

Based on the theoretical framework above, the following research hypothesis is determined:

- H1: Internal values have a positive and significant influence on green attitudes among electric vehicle consumers in Jakarta.
- H2: Green attitudes have positively and significantly influence on green customer citizenship behavior among electric vehicle consumers in Jakarta.
- H3: Green attitude mediates the relationship between internal values and green customer citizenship behavior among electric vehicle consumers in Jakarta.
- H4: Subjective norms have positively and significantly influence green attitudes among electric vehicle consumers in Jakarta.
- H5: Subjective norms have positively and significantly influence green customer citizenship behavior among electric vehicle consumers in Jakarta

3. Methodology

3.1. Research Method

This research uses a quantitative approach using a questionnaire with Structural Equation Modeling Partial Least Square SEM - PLS analysis. The minimum sample size for the SEM-PLS method is 100 or greater Ikhsani, Widayati, and Wuryandari (2021) and the recommended minimum sample size

ranges from 30 to 100 (Ghozali & Latan, 2015). The sampling technique used in this study was a nonprobability sampling method using purposive sampling.

According to Sugiyono (2017), purposive sampling is a sampling technique with specific considerations or objectives (purposive). This means that each subject taken from the population is deliberately selected based on specific objectives (purposive) and considerations according to the characteristics required in the study. Data were collected through online questionnaire distribution to 105 respondents who were electric vehicle users, domiciled in Jakarta, at least 18 years old, and had used electric vehicles for more than twelve months. Structural Equation Modeling Partial Least Squares (SEM - PLS) is a statistical analysis used to evaluate models consisting of linear relationships between variables, typically variables that cannot be directly observed. There are two model evaluations:

3.1.1. Measurement Model Evaluation (Outer Model)

This evaluation aims to demonstrate the validity and reliability of the measurement model. This measurement model evaluation involves three steps: Convergent Validity, which is assessed by factor loading values >0.7 ; Discriminant Validity, which is assessed by cross-loading values >0.7 ; and Internal Consistency, which is assessed by composite reliability values >0.7 . This can be seen from the Cronbach's Alpha coefficient.

3.1.2. Structural Model Evaluation (Inner Model)

Structural model evaluation aims to predict relationships between latent variables based on substantive theory using R-square for endogenous constructs and t-statistics from path coefficient tests. In this evaluation, several indicators must be considered: Coefficients Determination (R2), Path Coefficient, T-Statistic, Predictive Relevance (Q2), and F-square (Mardiana & Faqih, 2019).

4. Results and discussion

4.1. Descriptive Statistics

Descriptive statistical analysis was carried out by calculating the mean of the respondents' answer. The mean calculation includes all indicators of each variable. The purpose of this descriptive statistical analysis by variable is to understand the tendency or pattern of the respondents' response.

Table 2. Description of Research Variables

Variable	Indicators	Mean	Category
Internal Value	IV_1	4.24	High
	IV_2	4.14	High
	IV_3	4.09	High
4.16			High
Green Attitudes	GA_1	4.27	High
	GA_2	4.64	High
	GA_3	3.96	High
4.29			High
Subjective Norms	SN_1	4.17	High
	SN_2	4.09	High
	SN_3	4.10	High
4.12			High
Green Customer Citizenship Behaviour			
Green Customer Citizenship Advocacy	CCB_A1	3.78	High
	CCB_A2	4.16	High
	CCB_A3	4.55	High
Green Customer Citizenship Feedback	CCB_FB1	4.22	High
	CCB_FB2	4.34	High
	CCB_FB3	3.94	High
Green Customer Citizenship Helping	CCB_H1	3.96	High
	CCB_H2	4.38	High

CCB_H3	4.64	High
CCB_H4	3.86	High
	4.18	High

Source: Output data processed with SmartPLS 4.0, 2025

The Internal Value variable has three indicators: 1) The individual tends to feel self-fulfilled when making decisions that align with their values (IV_1); 2) The individual demonstrates a strong need to maintain integrity and act in line with their moral principles in an environmental way (IV_2); 3) The individual feels accomplished when contributing to environmental or socially beneficial outcomes (IV_3). Overall, the three indicators contribute an average to the Internal Value variable of 4.16, which is included in the high category.

The Green Attitudes variable has three indicators: 1) Individual perceives electric vehicle purchases as a valuable personal decision (GA_1); 2) The individual believes that purchasing an electric vehicle brings personal and social rewards (GA_2); 3) The individual considers buying an electric vehicle to be a smart and rational choice (GA_3). Overall, the three indicators contribute an average to the Green Attitudes variable of 4.29, which is included in the high category (Zabartih & Widhiarso, 2025).

The Subjective Norms variable has three indicators: 1) The individual provides suggestions to improve electric vehicle products or services (SN_1); 2) The individual offers praise or positive feedback to companies offering good electric vehicles (SN_1); 3) The individual informs the company when noticing issues with their electric vehicle product (SN_1). Overall, the three indicators contribute an average to the Subjective Norms variable of 4.12, which is in the high category .

The concept of Green Customer Citizenship Behavior has three variables, namely: 1) Green Customer Citizenship Advocacy variable; 2) Green Customer Citizenship Feedback Variable; 3) Green Customer Citizenship Helping variable. The Green Customer Citizenship variable has three indicators, namely: a) Respondents have recommended companies that sell electric vehicles to others (CCB_A1); b) Respondents have expressed positive opinions about companies that sell electric vehicles (CCB_A2); c) Respondents have encouraged others, including friends or family, to purchase electric vehicles from specific companies (CCB_A3).

The Green Customer Citizenship Feedback variable has three indicators, namely: a) Respondents share useful ideas for improving the quality of electric vehicles with company employees (CCB_FB1); b) Respondents provide positive feedback to the company and its employees when satisfied with electric vehicle quality (CCB_FB2); c) Respondents report issues or problems related to electric vehicles to the company's employees (CCB_FB3). Meanwhile, the Green Customer Citizenship Helping variable has four indicators, namely: a) Respondents assist other customers when help is needed during the electric vehicle purchasing process (CCB_H1); b) Respondents provide help to customers who appear to have difficulties in purchasing electric vehicles (CCB_H2); c) Respondents educate other customers on how to purchase electric vehicles (CCB_H3); d) Respondents offer advice to other customers regarding the purchase of electric vehicles (CCB_H4). Overall, the ten indicators contribute an average to the Green Customer Citizenship Behavior variable of 4.18, which is included in the high category.

4.2. Inferential Statistics Analysis

4.2.1. Outer Model Analysis

To analyze the relationships between the latent variables and the indicators using three components; discriminant validity, convergent validity, and composite reliability (Hair, Babin, Anderson, & Black, 2019). Below is the outer model that is used in this research.

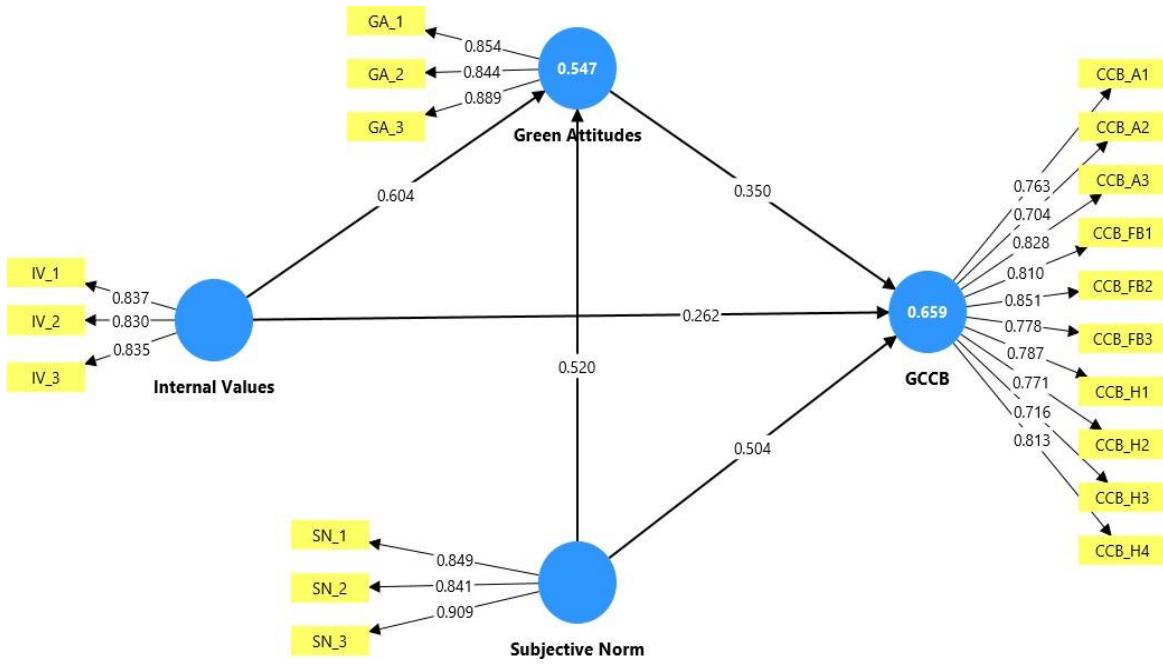


Figure 2. Result of Outer Model Measurement
Source: Output data processed with SmartPLS 4.0, 2025

4.3. Convergent Validity Test

Convergent validity tests the relationship between indicators with constructs or variables that represent them. This test is done by valuing the correlation between component score and construct score using PLS program. Indicator is deemed valid if the outer loading is $> 0,700$ and the AVE reaches or exceeds 0,500.

Table 3. Outer Loading and Average Variance Extracted (AVE)

Variable	Indicators	Outer Loading (>0.700)	AVE (>0.500)	Interpretation
Internal Values	IV_1	0.837	0.695	Valid
	IV_2	0.830		Valid
	IV_3	0.835		Valid
Green Attitudes	GA_1	0.854	0.744	Valid
	GA_2	0.844		Valid
	GA_3	0.889		Valid
Subjective Norms	SN_1	0.849	0.752	Valid
	SN_2	0.841		Valid
	SN_3	0.909		Valid
Green Customer Citizenship Advocacy	CCB_A1	0.763	0.614	Valid
	CCB_A2	0.704		Valid
	CCB_A3	0.828		Valid
Green Customer Citizenship Feedback	CCB_FB1	0.810	0.614	Valid
	CCB_FB2	0.851		Valid
	CCB_FB3	0.778		Valid
Green Customer Citizenship Helping	CCB_H1	0.787	0.614	Valid
	CCB_H2	0.771		Valid
	CCB_H3	0.716		Valid
	CCB_H4	0.813		Valid

Source: Output data processed with SmartPLS 4.0, 2025

Based on the table above, all indicators from research variables such as Internal Values, Green Attitudes, Subjective Norms, Green Customer Citizenship Behaviour: a) Green Customer Citizenship

Advocacy, b) Green Customer Citizenship Feedback, c) Green Customer Citizenship Helping have an outer loading of more than 0,700. Besides that, the Average Variance Extracted (AVE) for each variable is also above 0,500. This analysis shows that the highest Average Variance Extracted (AVE) belongs to Subjective Norms: 0.752, and the lowest AVE belongs to Green Customer Citizenship Behaviour: 0.614. All the indicators and variables have passed required for convergent validity test.

4.4. Discriminant Validity Test

One method used to assess discriminant validity is the Heterotrait-Monotrait Ratio (HTMT) analysis, comparing the average correlation between indicators from different constructs (heterotrait-heteromethod) with the average correlation between indicators in the same construct (monotrait heteromethod), to ensure that each construct in the model truly represents a unique concept. According to Hair et al. (2019), the HTMT value that is considered to meet discriminant validity must be below 0.900.

Table 4. Cross Loading Discriminant Validity

Internal Values	Green Attitudes	Subjective Norm	Green Customer Citizenship Behaviour
IV_1	0.837	0.445	0.275
IV_2	0.830	0.464	0.349
IV_3	0.835	0.416	0.314
GA_1	0.430	0.854	0.562
GA_2	0.429	0.844	0.638
GA_3	0.509	0.909	0.632
SN_1	-0.172	0.313	0.849
SN_2	-0.112	0.368	0.841
SN_3	-0.094	0.438	0.897
CCB_A1	0.317	0.594	0.478
CCB_A2	0.369	0.511	0.292
CCB_A3	0.223	0.589	0.584
CCB_H1	0.300	0.512	0.423
CCB_H2	0.282	0.568	0.578
CCB_H3	0.338	0.497	0.375
CCB_H4	0.310	0.562	0.427
CCB_FB1	0.309	0.538	0.564
CCB_FB2	0.269	0.618	0.593
CCB_FB3	0.268	0.547	0.460

Source: Output data processed with SmartPLS 4.0, 2025

Discriminant validity test using the Heterotrait-Monotrait Ratio (HTMT) approach shows that all HTMT values between constructs are below 0.900. This value indicates that each construct in this research model has adequate empirical differences and does not experience conceptual overlap with other constructs. In accordance with the guidelines from Hair et al. (2019), HTMT values below 0.900 are still acceptable for complex models, so it can be concluded that discriminant validity has been met. Thus, the measurement model in this study has met the required construction quality criteria before proceeding to the Reliability Test stage.

4.5. Reliability Test (Internal Consistency)

In Partial Least Squares Structural Equation Modeling (PLS-SEM), reliability test (internal consistency) is based on several key metrics with certain threshold values, in general, the requirements for a construct (latent variable) to be declared reliable in PLS-SEM are: Composite Reliability (CR) and rho A values must be greater than 0.70. Cronbach's Alpha is also expected to be above 0.70, although values above 0.60 can be tolerated under certain conditions.

Table 5. Value of Cronbach's Alpha and Composite Reliability

Variabel	Cronbach's Alpha (>0,700)	Composite Reliability (>0,700)	Interpretation
Internal Values	0.781	0.873	Reliable
Green Attitudes	0.828	0.897	Reliable
Subjective Norm	0.835	0.901	Reliable
Green Customer Citizenship Behaviour	0.930	0.941	Reliable

Source: Output data processed with SmartPLS 4.0, 2025

The Cronbach's Alpha value and Composite Reliability value of the variables: Internal Values, Green Attitudes, Subjective Norms, Green Customer Citizenship Behaviour: a) Green Customer Citizenship Advocacy, b) Green Customer Citizenship Feedback, c) Green Customer Citizenship Helping have met the requirements of >0.700 and it is stated that all research variables are Reliable.

4.6. Inner Model Analysis

4.6.1. Coefficient Determinant Test

In Partial Least Squares Structural Equation Modeling (PLS-SEM), the Coefficient of Determination (R Square) is used to assess the predictive power of the structural model (inner model), not to test statistical assumptions in the prerequisite sense. This test is part of the model evaluation, not a requirement that must be met before analysis. According to Hair et al. (2019), the R Square value is interpreted based on strength of the relationship between variables such as 0.75: Strong, 0.50: Moderate, 0.25: Weak.

Table 6. R-Square Value

Variabel	R-Square
Green Attitudes	0.547
Green Customer Citizenship Behaviour	0.659

Source: Output data processed with SmartPLS 4.0, 2025

Based on the analysis, Green Attitudes has a R² value of 0.547 or 54.7% which values as a medium, while the rest of the value which is 45.3% is influenced by other factors outside this research. On the other hand, Green Customer Citizenship Behaviour has a R² value of 0.659 or 65.9% which is valued as a medium, while the rest of the value of 34.1% is influenced by other factors outside this research.

4.7. Path-Coefficient Test

Hypothesis test in this research uses the bootstrapping method to evaluate path coefficient, T-statistics, and P-values to determine the relationship between variables. Bootstrapping in PLS-SEM is a non-parametric resampling statistical method that tests the statistical significance and reliability of model results by taking many random samples (with replacement) from the original data, then building the PLS model repeatedly to produce a stable distribution of results. This method helps assess t-statistics, p-values, and confidence intervals to test hypotheses about path coefficients (direct, indirect, total effects), R Square values, outer loadings, and others, thus ensuring that the relationship between variables is statistically significant and not due to chance. The maximum value of P-value is 0,05. Relationship is significant is T-Statistic > 1,974 (with confidence of 95%) and P-Value < 0,05. Path coefficient has a standard value of -1 to +1, that shows the direction and the strength of the relationship. A value that is closer to +1 shows positive value that is strong and a value that is closer to -1 shows a negative value that is strong.

Table 7. Path-Coefficient Test

Paths	Original Sample (O)	Sample Mean (O)	Standard Deviation (STDEV)	T Statistics (O/STDEV >1.96)	P Values	Interpretation
Direct Effects						
Internal Value → Green Attitudes	0.604	0.606	0.063	9.656	0.000	Positive and Significant
Green Attitudes → GCCB	0.350	0.348	0.084	4.176	0.000	Positive and Significant
Subjective Norms → Green Attitudes	0.520	0.520	0.063	8.217	0.000	Positive and Significant
Subjective Norms → GCCB	0.504	0.508	0.071	7.136	0.000	Positive and Significant
Indirect Effect						
Internal Values → Green Attitudes → GCCB	0.212	0.211	0.055	3.855	0.000	Positive and Significant

Source: Output data processed with SmartPLS 4.0, 2025

H1: Internal values have a positive and significant influence on green attitudes among electric vehicle consumers in Jakarta

Results shows that internal values positively and significantly influence green attitudes with a path coefficient value of 0.604, T Statistics value of 9.656, and a P value of 0.000. This results contradict with Homer and Kahle (1988) who argued that values may not necessarily influences attitudes. However, the findings from Tonder et al. (2023) offers a contrasting perspective, providing an empirical evidence of more than 400 samples that internal values, such as self-fulfillment, self respect, and a sense of accomplishment do play a vital role in shaping green attitudes. These internal values contribute to a person's belief system regarding the value, wisdom and reward of green purchasing behaviour. In the context of green consumer behaviour, it suggests that individuals who prioritize internal goals are more likely to form favorable attitudes towards environmental issues and sustainable consumption.

H2: Green attitudes have positively and significantly influence on green customer citizenship behavior among electric vehicle consumers in Jakarta

Hwang and Lyu (2020) found that attitude influences customer citizenship behaviour, and it also complements with Tonder et al. (2023) journal that found green attitude to positively and significantly influences green customer citizenship behaviour. This is also aligned that green attitude actually positively and significantly influences the green customer citizenship with a path coefficient value of 0.350, T Statistics value of 4.176, and a P value of 0.000.

H3: Green attitude mediates the relationship between internal values and green customer citizenship behavior among electric vehicle consumers in Jakarta

Homer and Kahle (1988) found that individuals who prioritize internal values are more likely to exhibit green customer citizenship behaviour. The confirmation of H3 offers additional support for the presence of an indirect effect from internal values to green customer citizenship behaviour through green attitudes. Understanding this mediation is valuable as it sheds light on the psychological mechanism linking internal values to actual environmentally driven behaviour. Green attitude mediates the relationship between internal values and second order factor green customer citizenship behaviour positively and significantly with a path coefficient value of 0.212, a T statistics value of 3.855 and a P value of 0.000.

H4: Subjective norms have positively and significantly influence green attitudes among electric vehicle consumers in Jakarta

Subjective norm positively and significantly influences green attitudes which has a path coefficient of 0.520, a T statistics value of 8.217 and a P value of 0.000. This too aligns with Tonder et al. (2023) that also found subjective norm positively and significantly influences green attitudes. Huang, Teo, and

Zhou (2020) also found that subjective norm, including the expectation of instructors, institutions, and peers may positively impact attitudes towards using the internet. Another research by Yang and Jolly (2009) also found that in the use of mobile data services, subjective norm has been found to positively impact customers' attitudes.

H5: Subjective norms have positively and significantly influence green customer citizenship behavior among electric vehicle consumers in Jakarta

While most studies have only focused on verifying relationships between subjective norm and green purchasing behaviour intention. Moreover, existing research has given limited attention to the link between subjective norms and customer citizenship behaviour. Green customer citizenship behaviour are highly susceptible to social influence (Tonder et al., 2023). This is also aligned that the subjective norm positively and significantly influences the green customer citizenship behaviour with a path coefficient of 0.504, a T statistics value of 7.136, and a P value of 0.000. This means that it is important to leverage social influence as a tool to promote widespread sustainable behaviours among electric vehicle consumers.

5. Conclusions

5.1. Conclusion

First, Internal Values have a positive and significant influence on green attitudes. Individuals with strong internal values such as self-fulfillment, environmental respect, and personal pride in eco-friendly behaviors were more likely to develop positive attitude towards using electric vehicle. This suggests that internal motivations significantly drive favorable perspectives towards a more sustainable transportation. Secondly, green attitudes have a positive and significant influence green customer citizenship behaviour. Consumers who perceived electric vehicle purchases as satisfying, beneficial, and wise demonstrated a great in the advocacy, helping, and feedback behaviours. Positive attitude towards sustainability directly into proactive and voluntary engagement that are beneficial to companies who promotes electric vehicles

Third, green attitudes were shown to mediate the relationship between internal values and green customer citizenship behaviour. This mediation effect highlights the critical role attitude play in converting deeply-held internal values into tangible actions and behaviours. Fourth, subjective norms, have a positive and significant influence both green attitudes and green customer citizenship behaviour. It underscores the powerful role of social influence as individual are more likely to adopt positive attitudes and engage actively in green behaviours when considering subjective norms dilemmas that they may face.

5.2. Recommendations

1. Strengthening Internal Values to Enhance Consumer Awareness and Pride in Adopting Electric Vehicle.
2. Enhancing Green Attitudes Through Informational Campaigns on the Benefits and Satisfaction of Using Electric Vehicles.
3. Optimizing the Influence of Subjective Norms by Involving Community Leaders and Social Groups in Promoting Electric Vehicles.
4. Fostering Community Engagement through Workshops and Events that Encourage Direct Interaction Among Electric Vehicle Users.
5. Developing a Sustainable Feedback Mechanism to Improve the Quality of Electric Vehicle Products and Services.

References

Alanazi, F. (2023). Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation *Applied Sciences*, 13(10), 1-23. doi:<https://doi.org/10.3390/app13106016>

Devi, S., Arifat, Y., & Maliah, M. (2025). The Effect of using E-Money and Self-Control on Student Financial Management. *Journal of Digital Business and Marketing*, 1(2), 105-115. doi:<https://doi.org/10.35912/jdbm.v1i2.3327>

Edelman, D. J., & Gunawan, D. S. (2020). Managing the Urban Environment of Jakarta, Indonesia. *Current Urban Studies*, 8(1), 57-106. doi:<https://doi.org/10.4236/cus.2020.81003>

Ghozali, I., & Latan, H. (2015). *Partial Least Squares Konsep Teknik dan Aplikasi dengan Program Smart PLS 3.0*. Semarang: Badan Penerbit Undip.

Glazener, A., Wylie, J., van Waas, W., & Kkreis, H. (2022). The Impacts of Car-Free Days and Events on the Environment and Human Health. *Current Environmental Health Reports*, 9(2), 165-182. doi:<https://doi.org/10.1007/s40572-022-00342-y>

Hair, J., Babin, B., Anderson, R., & Black, W. (2019). *Multivariate Data Analysis*. England: Pearson Prentice.

Homer, P. M., & Kahle, L. R. (1988). A Structural Equation Test of the Value-Attitude-Behavior Hierarchy. *Journal of Personality and social Psychology*, 54(4), 638-646. doi:<https://psycnet.apa.org/doi/10.1037/0022-3514.54.4.638>

Huang, F., Teo, T., & Zhou, M. (2020). Chinese Students' Intentions to Use the Internet-Based Technology for Learning. *Educational Technology Research and Development*, 68(1), 575-591. doi:<https://doi.org/10.1007/s11423-019-09695-y>

Hwang, J., & Lyu, S. O. (2020). Relationships among Green Image, Consumer Attitudes, Desire, and Customer Citizenship Behavior in the Airline Industry. *International Journal of Sustainable Transportation*, 14(6), 437-447. doi:<https://doi.org/10.1080/15568318.2019.1573280>

Ikhsani, K., Widayati, C. C., & Wuryandari, N. E. R. (2021). Analisis Pengaruh Persepsi Resiko, Promosi, Dan Kepercayaan Merek Terhadap Niat Beli Pasca Covid-19. *Jurnal Bisnis, Ekonomi, Manajemen, Dan Kewirausahaan*, 66-75. doi:<https://doi.org/10.52909/jbemk.v1i1.31>

Iqbal, A., Saraswati, E., Sutrisno, & Tojibussabirin, M. (2024). Green Consumption Behaviour in Indonesia: Exploring The Role of Government Support. *Cogent Social Sciences*, 10(1), 1-17. doi:<https://doi.org/10.1080/23311886.2024.2439546>

Liang, J. L., Barus, L. S., Ong, W., & Maharani, J. C. (2024). Comprehensive Research Study of Challenges and Opportunities in Electric Vehicle Adoption: Case Study in Jakarta. *Syntax Idea*, 6(9), 6082-6096. doi:<https://doi.org/10.46799/syntax-idea.v6i9.4491>

Mardiana, N., & Faqih, A. (2019). Model SEM-PLS Terbaik untuk Evaluasi Pembelajaran Matematika Diskrit dengan LMS. *BAREKENG: Jurnal Ilmu Matematika dan Terapan*, 13(3), 157-170. doi:<https://doi.org/10.30598/barekengvol13iss3pp157-170ar898>

Rudiyanto, C., & Sudrajad, O. Y. (2025). Choosing the Most Suitable Sustainability Report Standard For Banking Industry: A Case Study of Bank ABC. *Journal of Digital Business and Marketing*, 1(2), 95-104. doi:<https://doi.org/10.35912/jdbm.v1i2.3326>

Salsabila, H., & Salehudin, I. (2023). Plugged in and Charging: Environmentalism Factors Does Affect Behavioral Intention to Purchase Electric Cars in Indonesia, but Non-Environmental Factors are Important Too. *Smart City*, 3(2), 1-18. doi:<https://dx.doi.org/10.2139/ssrn.4323150>

Sasongko, T. W., Ciptomulyono, U., Wirjodirdjo, B., & Prastawa, A. (2024). Low Carbon Emission Vehicle Adoption and Production Barriers in Indonesia: A DEMATEL Approach. *E3S Web of Conferences*, 557, 1-10. doi:<https://doi.org/10.1051/e3sconf/202455704001>

Solekah, N. A., Ratnasari, K., & Hirmawan, A. P. (2023). Prediction of Green Purchase Intention for Electric Vehicles: A Theory Of Planned Behavior Approach. *Jurnal Minds: Manajemen Ide Dan Inspirasi*, 10(2), 297-320. doi:<https://dx.doi.org/10.24252/minds.v10i2.40772>

Stahl, G. K., & Maznevski, M. L. (2021). Unraveling the Effects of Cultural Diversity in Teams: A Retrospective of Research on Multicultural Work Groups and an Agenda for Future Research. *Journal of International Business Studies*, 52(1), 4-22. doi:<https://doi.org/10.1057/s41267-020-00389-9>

Sugiyono. (2017). *Metode Penelitian Kuantitatif, Kualitatif dan R&D*. Bandung: Alfabeta.

Tonder, E. V., Fullerton, S., Beer, L. T. D., & Saunders, S. G. (2023). Social and Personal Factors Influencing Green Customer Citizenship Behaviours: The Role of Subjective Norm, Internal Values and Attitudes. *Journal of Retailing and Consumer Services*, 71. doi:<https://doi.org/10.1016/j.jretconser.2022.103190>

Utami, M. W. D., Yuniaristanto, Y., & Sutopo, W. (2020). Adoption Intention Model of Electric Vehicle in Indonesia. *Jurnal Optimasi Sistem Industri*, 19(1), 70-81. doi:<https://doi.org/10.25077/josi.v19.n1.p70-81.2020>

Wahyuningtyastuti, I., & Ariyanti, M. (2025). Understanding Continued BNPL Usage Behavior in E-Commerce: Extended UTAUT2 with Usage Intention Mediation. *Journal of Digital Business and Marketing*, 1(2), 117-137. doi:<https://doi.org/10.35912/jdbm.v1i2.3685>

Wulandari, W. E., & Haryono, P. M. B. (2025). The Influence of Brand Awareness and Brand Image on Sales Mediated by Customer Service at Resto Ceplok Telor Bogor. *Advances in Management and Business Studies*, 1(1), 1-17. doi:<https://doi.org/10.35912/ambus.v1i1.3726>

Yahman, Y., & Setyagama, A. (2023). Government Policy in Regulating the Environment for Development of Sustainable Environment in Indonesia. *Environment, Development and Sustainability*, 25(11), 12829-12840. doi:<https://doi.org/10.1007/s10668-022-02591-1>

Yang, K., & Jolly, L. D. (2009). The Effects of Consumer Perceived Value and Subjective Norm on Mobile Data Service Adoption between American and Korean consumers. *Journal of Retailing and Consumer Services*, 16(6), 502-508. doi:<https://doi.org/10.1016/j.jretconser.2009.08.005>

Yansah, R., Maulana, A., & Shihab, M. S. (2025). The Effect of Personal Selling and Relationship Marketing on Customer Loyalty and Satisfaction as an intervening Variable in PT. Welty Indah Perkasa Palembang Branch. *Journal of Digital Business and Marketing*, 1(2), 87-94. doi:<https://doi.org/10.35912/jdbm.v1i2.3325>

Zabartih, M. I., & Widhiarso, W. (2025). Information Technology Strategic Plan for Hospital Using Ward and Peppard Model. *Journal of Digital Business and Marketing*, 1(2), 131-148. doi:<https://doi.org/10.35912/jdbm.v1i2.3354>