Maternal healthcare using IoT-based integrated medical device: Bangladesh perspective

Published: Aug 7, 2025

Abstract:

Purpose: The main purpose of this study was to develop a low-cost integrated medical device. This device will help investigate the risk levels of pregnant patients and reduce the cost of medical diagnosis for poor countries such as Bangladesh, where maternal healthcare is a great concern.

Research Methodology: A device equipped with multiple sensors was developed to collect raw data from pregnant patients. This data is transmitted to the cloud, where open-source algorithms process and analyze it to identify patient risk levels.

Results: We developed the system, collected raw data from patients, and uploaded these data to our cloud system. The data were processed in the cloud, and the resultant data were presented in the form of graphs. From these graphs, the risk levels were determined.

Conclusion: The IoT-based integrated device showed approximately 93% accuracy compared with conventional methods. It is a cost-effective, scalable, and adaptable solution that is suitable for maternal healthcare in developing countries. Features such as plug-and-play sensors, real-time cloud processing, and machine learning-based diagnostics make it a promising innovation for reducing maternal and infant mortality rates.

Limitations: The device is designed solely for use in pregnant patients and requires authorization from health regulators. Some high-cost sensors were excluded to ensure affordability..

Contribution: The main contribution of this study is to minimize the costs involved in maternal healthcare in poor countries such as Bangladesh. This, in turn, controls the death of mothers and children by improving maternal healthcare facilities.

Keywords:
1. Cloud
2. Cyber-Physical Systems
3. Integrated Medical Devices
4. Open Source Code
5. Processing Algorithm
Authors:
1 . Mohammod Abul Kashem
2 . Marzia Ahmed
3 . Naderuzzaman Mohammad
How to Cite
Kashem, M. A. ., Ahmed, M., & Mohammad, N. (2025). Maternal healthcare using IoT-based integrated medical device: Bangladesh perspective. International Journal of Accounting and Management Information Systems, 3(2), 85–99. https://doi.org/10.35912/ijamis.v3i2.3288

Downloads

Download data is not yet available.
Issue & Section
References

    Abegaz, K. H., & Habtewold, E. M. (2019). Trend and barriers of antenatal care utilization from 2000 to 2016 Ethiopian DHS: a data mining approach. Scientific African, 3, e00063.

    Akila1, A., Parameswari, R., & Jayakumari, C. (2022). Big data in healthcare: Management, analysis, and future prospects. Handbook of Intelligent Healthcare Analytics: Knowledge Engineering with Big Data Analytics, 309-326. doi:https://doi.org/10.1002/9781119792550.ch14

    Alzahrani, A., Alshehri, M., AlGhamdi, R., & Sharma, S. K. (2023). Improved wireless medical cyber-physical system (IWMCPS) based on machine learning. Paper presented at the Healthcare.

    Amadea, E., Suryaputra, R., & Sondakh, O. (2022). The effect of product quality, service quality, environment quality, and product assortment on customer loyalty trough customer satisfaction of BCA mobile application. J. Econ. Financ. Manag. Stud, 5(03). doi:https://doi.org/10.47191/jefms/v5-i3-17

    Amaral, C., Paiva, M., Rodrigues, A. R., Veiga, F., & Bell, V. (2024). Global regulatory challenges for medical devices: impact on innovation and market access. Applied Sciences, 14(20), 9304. doi:http://dx.doi.org/10.3390/app14209304

    Banerjee, A., & Gupta, S. K. (2014). Analysis of smart mobile applications for healthcare under dynamic context changes. IEEE Transactions on Mobile Computing, 14(5), 904-919.

    Blinzakov, Z., & Pallikarakis, N. (2001). An integrated software system for medical equipment management. Paper presented at the 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

    Cecelya, Z., Rahmadi, A. A., & Armin, A. P. (2025). Prototyping antarmuka Web Cybers Academy melalui Integrasi Desain untuk Meningkatkan Efektivitas Pengguna. Jurnal Ilmu Siber dan Teknologi Digital, 3(1), 43-61. doi:10.35912/jisted.v3i1.5097

    Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: management, analysis and future prospects. Journal of big data, 6(1), 1-25. doi:https://doi.org/10.1186/s40537-019-0217-0

    De la Cruz, B., Cuellar, R., Rojas, E., Molina, V., & Robles, H. (2015). Transmission of ECG signals with android mobile system via bluetooth. Paper presented at the 2015 Pan American Health Care Exchanges (PAHCE).

    Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Tavares, J. M. R. (2018). Medical cyber-physical systems: A survey. Journal of medical systems, 42(4), 74. doi:https://doi.org/10.1007/s10916-018-0921-x

    Dicuonzo, G., Galeone, G., Shini, M., & Massari, A. (2022). Towards the use of big data in healthcare: A literature review. Paper presented at the Healthcare.

    Fitriana, D., Rahmadi, A. A., & Armin, A. P. (2024). Rancang Bangun Sistem Informasi Manajemen Praktik Mandiri Dokter Gigi Berbasis Website. Jurnal Ilmu Siber dan Teknologi Digital, 3(1), 63-84. doi:10.35912/jisted.v3i1.5096

    Hameed, S. A., Hassan, A., Shabnam, S., Miho, V., & Khalifa, O. (2008). An efficient emergency, healthcare, and medical information system. International Journals of Biometric and Bioinformatics (IJBB), 2(5), 1-9.

    Karim, N. A., & Ahmad, M. (2010). An overview of electronic health record (EHR) implementation framework and impact on health care organizations in malaysia: A case study. Paper presented at the 2010 IEEE International Conference on Management of Innovation & Technology.

    Khan, S., Khan, H. U., & Nazir, S. (2022). Systematic analysis of healthcare big data analytics for efficient care and disease diagnosing. Scientific Reports, 12(1), 22377. doi:https://doi.org/10.1038/s41598-022-26090-5

    Khuluqa, M. A. A. A., Mardwita, M., & Yuliawati, E. (2025). Karakterisasi Struktur dan Morfologi Membran Polietersulfon dengan Penambahan Variasi Katalis Organik Titanium Dioksida. Jurnal Teknologi Riset Terapan, 2(1), 55-66. doi:10.35912/jatra.v2i1.4948

    Lu, T., Zhao, J., Zhao, L., Li, Y., & Zhang, X. (2015). Towards a framework for assuring cyber physical system security. International Journal of Security and Its Applications, 9(3), 25-40.

    Lv, Z., Xia, F., Wu, G., Yao, L., & Chen, Z. (2010). iCare: a mobile health monitoring system for the elderly. Paper presented at the 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing.

    Martin, J. L., & Barnett, J. (2012). Integrating the results of user research into medical device development: insights from a case study. BMC medical informatics and decision making, 12(1), 1-10.

    Mehta, R., Bhatt, N., & Ganatra, A. (2016). A survey on data mining technologies for decision support system of maternal care domain. International Journal of Computers and Applications, 138(10), 20-24.

    Munyao, M. M., Maina, E. M., Mambo, S. M., & Wanyoro, A. (2024). Real-time pre-eclampsia prediction model based on IoT and machine learning. Discover Internet of Things, 4(1), 10. doi:https://doi.org/10.1007/s43926-024-00063-8

    Nakajima, H., Shiga, T., & Hata, Y. (2012). Systems health care: Coevolutionary integration of smart devices and smart services. Paper presented at the 2012 Annual SRII Global Conference.

    Oh, A.-S. (2015). A Study on HL7 Standard Message for Healthcare System Based on ISO/IEEE 11073. International Journal of Smart Home, 9(6), 113-118.

    Palanisamy, V., & Thirunavukarasu, R. (2019). Implications of big data analytics in developing healthcare frameworks–A review. Journal of King Saud University-Computer and Information Sciences, 31(4), 415-425. doi:https://doi.org/10.1016/j.jksuci.2017.12.007

    Perejón, D., Bardalet, A., Gascó, I., Siscart, J., Serna, M. C., & Orós, M. (2024). Hypertension subtypes and adverse maternal and perinatal outcomes-a retrospective population-based cohort study. BMC pregnancy and childbirth, 24(1), 568. doi:https://doi.org/10.1186/s12884-024-06754-y

    Phuong, L. T. T., Hieu, N. T., Wang, J., Lee, S., & Lee, Y.-K. (2011). Energy efficiency based on quality of data for cyber physical systems. Paper presented at the 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing.

    Pratama, D. B., & Armin, A. P. (2025). Pengembangan Sistem Informasi Aplikasi Mobile Pelayanan Elektronik Dispendukcapil Kota Malang. Jurnal Ilmu Siber dan Teknologi Digital, 3(1), 11-41. doi:10.35912/jisted.v3i1.5098

    Prosperi, M., Min, J. S., Bian, J., & Modave, F. (2018). Big data hurdles in precision medicine and precision public health. BMC medical informatics and decision making, 18(1), 139. doi:https://doi.org/10.1186/s12911-018-0719-2

    Putri, N. S., Budiarti, E., Huboyo, H. S., & Haryanti, N. (2024). Perencanaan Strategi Reduksi Emisi Gas Rumah Kaca pada Sektor Energi. Jurnal Teknologi Riset Terapan, 2(1), 37-53. doi:10.35912/jatra.v2i1.4602

    Riesna, D. M. R., Pujianto, D. E., Efendi, A. J. I., Nugroho, B. A., & Saputra, D. I. S. (2023). Identifikasi Platform dan Faktor Sukses dalam Manajemen Proyek Teknologi Informasi. Jurnal Teknologi Riset Terapan, 1(1), 1-9. doi:10.35912/jatra.v1i1.1458

    Sarhaddi, F., Azimi, I., Labbaf, S., Niela-Vilen, H., Dutt, N., Axelin, A., . . . Rahmani, A. M. (2021). Long-term IoT-based maternal monitoring: system design and evaluation. Sensors, 21(7), 2281. doi:https://doi.org/10.3390/s21072281

    Seth, M., Jalo, H., Högstedt, Å., Medin, O., Sjöqvist, B. A., & Candefjord, S. (2025). Technologies for Interoperable Internet of Medical Things Platforms to Manage Medical Emergencies in Home and Prehospital Care: Scoping Review. Journal of Medical Internet Research, 27, e54470. doi:https://doi.org/10.2196/54470

    Shaikh, T. A., Rasool, T., & Verma, P. (2023). Machine intelligence and medical cyber-physical system architectures for smart healthcare: Taxonomy, challenges, opportunities, and possible solutions. Artificial Intelligence in Medicine, 146, 102692. doi:https://doi.org/10.1016/j.artmed.2023.102692

    Shakor, M. Y., & Khaleel, M. I. (2024). Recent advances in big medical image data analysis through deep learning and cloud computing. Electronics, 13(24), 4860. doi:https://doi.org/10.3390/electronics13244860

    Soegijoko, S. (2013). A brief review on existing cyber-physical systems for healthcare applications and their prospective national developments. Paper presented at the 2013 3rd International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME).

    Sulisworo, D., Erviana, V. Y., Rosyady, P. A., Astuti, D. A., Rasyid, E., Bakhtiar, R., . . . Duma, K. (2025). Wearable IoT for Maternal Healthcare: A Literature Review on Implementation, Challenges, and Future Prospects. Bincang Sains dan Teknologi, 4(01), 51-60. doi:https://doi.org/10.56741/bst.v4i01.817

    Torab-Miandoab, A., Samad-Soltani, T., Jodati, A., & Rezaei-Hachesu, P. (2023). Interoperability of heterogeneous health information systems: a systematic literature review. BMC medical informatics and decision making, 23(1), 18. doi:https://doi.org/10.1186/s12911-023-02115-5

    Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3-13.

    Yang, X., Liu, L., & Wang, Y. (2024). A Decision Tree-Driven IoT systems for improved pre-natal diagnostic accuracy. BMC medical informatics and decision making, 24(1), 375. doi:https://doi.org/10.1186/s12911-024-02759-x

    Zhang, Y., Qiu, M., Tsai, C.-W., Hassan, M. M., & Alamri, A. (2015). Health-CPS: Healthcare cyber-physical system assisted by cloud and big data. IEEE Systems Journal, 11(1), 88-95.

  1. Abegaz, K. H., & Habtewold, E. M. (2019). Trend and barriers of antenatal care utilization from 2000 to 2016 Ethiopian DHS: a data mining approach. Scientific African, 3, e00063.
  2. Akila1, A., Parameswari, R., & Jayakumari, C. (2022). Big data in healthcare: Management, analysis, and future prospects. Handbook of Intelligent Healthcare Analytics: Knowledge Engineering with Big Data Analytics, 309-326. doi:https://doi.org/10.1002/9781119792550.ch14
  3. Alzahrani, A., Alshehri, M., AlGhamdi, R., & Sharma, S. K. (2023). Improved wireless medical cyber-physical system (IWMCPS) based on machine learning. Paper presented at the Healthcare.
  4. Amadea, E., Suryaputra, R., & Sondakh, O. (2022). The effect of product quality, service quality, environment quality, and product assortment on customer loyalty trough customer satisfaction of BCA mobile application. J. Econ. Financ. Manag. Stud, 5(03). doi:https://doi.org/10.47191/jefms/v5-i3-17
  5. Amaral, C., Paiva, M., Rodrigues, A. R., Veiga, F., & Bell, V. (2024). Global regulatory challenges for medical devices: impact on innovation and market access. Applied Sciences, 14(20), 9304. doi:http://dx.doi.org/10.3390/app14209304
  6. Banerjee, A., & Gupta, S. K. (2014). Analysis of smart mobile applications for healthcare under dynamic context changes. IEEE Transactions on Mobile Computing, 14(5), 904-919.
  7. Blinzakov, Z., & Pallikarakis, N. (2001). An integrated software system for medical equipment management. Paper presented at the 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
  8. Cecelya, Z., Rahmadi, A. A., & Armin, A. P. (2025). Prototyping antarmuka Web Cybers Academy melalui Integrasi Desain untuk Meningkatkan Efektivitas Pengguna. Jurnal Ilmu Siber dan Teknologi Digital, 3(1), 43-61. doi:10.35912/jisted.v3i1.5097
  9. Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: management, analysis and future prospects. Journal of big data, 6(1), 1-25. doi:https://doi.org/10.1186/s40537-019-0217-0
  10. De la Cruz, B., Cuellar, R., Rojas, E., Molina, V., & Robles, H. (2015). Transmission of ECG signals with android mobile system via bluetooth. Paper presented at the 2015 Pan American Health Care Exchanges (PAHCE).
  11. Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Tavares, J. M. R. (2018). Medical cyber-physical systems: A survey. Journal of medical systems, 42(4), 74. doi:https://doi.org/10.1007/s10916-018-0921-x
  12. Dicuonzo, G., Galeone, G., Shini, M., & Massari, A. (2022). Towards the use of big data in healthcare: A literature review. Paper presented at the Healthcare.
  13. Fitriana, D., Rahmadi, A. A., & Armin, A. P. (2024). Rancang Bangun Sistem Informasi Manajemen Praktik Mandiri Dokter Gigi Berbasis Website. Jurnal Ilmu Siber dan Teknologi Digital, 3(1), 63-84. doi:10.35912/jisted.v3i1.5096
  14. Hameed, S. A., Hassan, A., Shabnam, S., Miho, V., & Khalifa, O. (2008). An efficient emergency, healthcare, and medical information system. International Journals of Biometric and Bioinformatics (IJBB), 2(5), 1-9.
  15. Karim, N. A., & Ahmad, M. (2010). An overview of electronic health record (EHR) implementation framework and impact on health care organizations in malaysia: A case study. Paper presented at the 2010 IEEE International Conference on Management of Innovation & Technology.
  16. Khan, S., Khan, H. U., & Nazir, S. (2022). Systematic analysis of healthcare big data analytics for efficient care and disease diagnosing. Scientific Reports, 12(1), 22377. doi:https://doi.org/10.1038/s41598-022-26090-5
  17. Khuluqa, M. A. A. A., Mardwita, M., & Yuliawati, E. (2025). Karakterisasi Struktur dan Morfologi Membran Polietersulfon dengan Penambahan Variasi Katalis Organik Titanium Dioksida. Jurnal Teknologi Riset Terapan, 2(1), 55-66. doi:10.35912/jatra.v2i1.4948
  18. Lu, T., Zhao, J., Zhao, L., Li, Y., & Zhang, X. (2015). Towards a framework for assuring cyber physical system security. International Journal of Security and Its Applications, 9(3), 25-40.
  19. Lv, Z., Xia, F., Wu, G., Yao, L., & Chen, Z. (2010). iCare: a mobile health monitoring system for the elderly. Paper presented at the 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing.
  20. Martin, J. L., & Barnett, J. (2012). Integrating the results of user research into medical device development: insights from a case study. BMC medical informatics and decision making, 12(1), 1-10.
  21. Mehta, R., Bhatt, N., & Ganatra, A. (2016). A survey on data mining technologies for decision support system of maternal care domain. International Journal of Computers and Applications, 138(10), 20-24.
  22. Munyao, M. M., Maina, E. M., Mambo, S. M., & Wanyoro, A. (2024). Real-time pre-eclampsia prediction model based on IoT and machine learning. Discover Internet of Things, 4(1), 10. doi:https://doi.org/10.1007/s43926-024-00063-8
  23. Nakajima, H., Shiga, T., & Hata, Y. (2012). Systems health care: Coevolutionary integration of smart devices and smart services. Paper presented at the 2012 Annual SRII Global Conference.
  24. Oh, A.-S. (2015). A Study on HL7 Standard Message for Healthcare System Based on ISO/IEEE 11073. International Journal of Smart Home, 9(6), 113-118.
  25. Palanisamy, V., & Thirunavukarasu, R. (2019). Implications of big data analytics in developing healthcare frameworks–A review. Journal of King Saud University-Computer and Information Sciences, 31(4), 415-425. doi:https://doi.org/10.1016/j.jksuci.2017.12.007
  26. Perejón, D., Bardalet, A., Gascó, I., Siscart, J., Serna, M. C., & Orós, M. (2024). Hypertension subtypes and adverse maternal and perinatal outcomes-a retrospective population-based cohort study. BMC pregnancy and childbirth, 24(1), 568. doi:https://doi.org/10.1186/s12884-024-06754-y
  27. Phuong, L. T. T., Hieu, N. T., Wang, J., Lee, S., & Lee, Y.-K. (2011). Energy efficiency based on quality of data for cyber physical systems. Paper presented at the 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing.
  28. Pratama, D. B., & Armin, A. P. (2025). Pengembangan Sistem Informasi Aplikasi Mobile Pelayanan Elektronik Dispendukcapil Kota Malang. Jurnal Ilmu Siber dan Teknologi Digital, 3(1), 11-41. doi:10.35912/jisted.v3i1.5098
  29. Prosperi, M., Min, J. S., Bian, J., & Modave, F. (2018). Big data hurdles in precision medicine and precision public health. BMC medical informatics and decision making, 18(1), 139. doi:https://doi.org/10.1186/s12911-018-0719-2
  30. Putri, N. S., Budiarti, E., Huboyo, H. S., & Haryanti, N. (2024). Perencanaan Strategi Reduksi Emisi Gas Rumah Kaca pada Sektor Energi. Jurnal Teknologi Riset Terapan, 2(1), 37-53. doi:10.35912/jatra.v2i1.4602
  31. Riesna, D. M. R., Pujianto, D. E., Efendi, A. J. I., Nugroho, B. A., & Saputra, D. I. S. (2023). Identifikasi Platform dan Faktor Sukses dalam Manajemen Proyek Teknologi Informasi. Jurnal Teknologi Riset Terapan, 1(1), 1-9. doi:10.35912/jatra.v1i1.1458
  32. Sarhaddi, F., Azimi, I., Labbaf, S., Niela-Vilen, H., Dutt, N., Axelin, A., . . . Rahmani, A. M. (2021). Long-term IoT-based maternal monitoring: system design and evaluation. Sensors, 21(7), 2281. doi:https://doi.org/10.3390/s21072281
  33. Seth, M., Jalo, H., Högstedt, Å., Medin, O., Sjöqvist, B. A., & Candefjord, S. (2025). Technologies for Interoperable Internet of Medical Things Platforms to Manage Medical Emergencies in Home and Prehospital Care: Scoping Review. Journal of Medical Internet Research, 27, e54470. doi:https://doi.org/10.2196/54470
  34. Shaikh, T. A., Rasool, T., & Verma, P. (2023). Machine intelligence and medical cyber-physical system architectures for smart healthcare: Taxonomy, challenges, opportunities, and possible solutions. Artificial Intelligence in Medicine, 146, 102692. doi:https://doi.org/10.1016/j.artmed.2023.102692
  35. Shakor, M. Y., & Khaleel, M. I. (2024). Recent advances in big medical image data analysis through deep learning and cloud computing. Electronics, 13(24), 4860. doi:https://doi.org/10.3390/electronics13244860
  36. Soegijoko, S. (2013). A brief review on existing cyber-physical systems for healthcare applications and their prospective national developments. Paper presented at the 2013 3rd International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME).
  37. Sulisworo, D., Erviana, V. Y., Rosyady, P. A., Astuti, D. A., Rasyid, E., Bakhtiar, R., . . . Duma, K. (2025). Wearable IoT for Maternal Healthcare: A Literature Review on Implementation, Challenges, and Future Prospects. Bincang Sains dan Teknologi, 4(01), 51-60. doi:https://doi.org/10.56741/bst.v4i01.817
  38. Torab-Miandoab, A., Samad-Soltani, T., Jodati, A., & Rezaei-Hachesu, P. (2023). Interoperability of heterogeneous health information systems: a systematic literature review. BMC medical informatics and decision making, 23(1), 18. doi:https://doi.org/10.1186/s12911-023-02115-5
  39. Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3-13.
  40. Yang, X., Liu, L., & Wang, Y. (2024). A Decision Tree-Driven IoT systems for improved pre-natal diagnostic accuracy. BMC medical informatics and decision making, 24(1), 375. doi:https://doi.org/10.1186/s12911-024-02759-x
  41. Zhang, Y., Qiu, M., Tsai, C.-W., Hassan, M. M., & Alamri, A. (2015). Health-CPS: Healthcare cyber-physical system assisted by cloud and big data. IEEE Systems Journal, 11(1), 88-95.