Big Data Analytics and market competitiveness of selected firms in Lagos State, Nigeria

Published: Oct 26, 2023


Purpose: This study specifically evaluates the effect of Intangible Big Data Analytics Resources (IBDAR) and Tangible Big Data Analytics Resources (TBDAR) on a firm’s market competitiveness in manufacturing firms. The authors used RBV as the main theoretical framework to investigate this.

Research methodology: This study used a survey research design. The study employed a non-probability sample and a final sample of seventy-two employees selected from manufacturing firms in Lagos State, Nigeria.

Results: The hypotheses were tested using multiple linear regressions. The empirical results showed that the organizational use of TBDAR has a significant effect on Market Competitiveness (MCOM), and that the organizational use of IBDAR has a significant effect on MCOM.

Limitations: First, the sample is restricted to only the Nigerian setting; to draw broader and deeper implications, it could be useful to take diverse samples from different contexts and sectors. Second, this study does not utilize the PLS-SEM technique to model mediators and moderators.

Contribution: This study has significant policy implications for practitioners and is an original study based on primary data from Nigerian manufacturing firms.

1. Big Data
2. Big Data Analytics
3. Market Competitiveness
4. Tangible Big Data Analytics Resources
5. Intangible Big Data Analytics Resources
1 . Nwosu Kanayo Chike
2 . Euphemia Ifunanya Mbamalu
3 . Chimezie Alex Oguanobi
4 . Chinedu Francis Egbunike
How to Cite
Chike, N. K., Mbamalu, E. I., Oguanobi, C. A., & Egbunike, C. F. (2023). Big Data Analytics and market competitiveness of selected firms in Lagos State, Nigeria. Annals of Management and Organization Research, 4(4), 251–269.


Download data is not yet available.
Issue & Section
  1. ACCA. (n.d.). Data analytics and the auditor. Retrieved from
  2. Akter, S., Bandara, R., Hani, U., Wamba, S. F., Foropon, C., & Papadopoulos, T. (2019). Analytics-based decision-making for service systems: A qualitative study and agenda for future research. International Journal of Information Management, 48, 85-95.
  3. Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How can firm performance be improved using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113-131.
  4. Aljumah, A. I., Nuseir, M. T., & Alam, M. M. (2021). Organizational performance and capabilities to analyze big data: do the ambidexterity and business value of big data analytics matter? Business process management journal, 27(4), 1088-1107.
  5. Almada-Lobo, F. (2015). The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). Journal of innovation management, 3(4), 16-21.
  6. Alotaibi, M., Alotibi, M., & Zraqat, O. (2021). The impact of information technology governance in reducing cloud accounting information systems risks in telecommunications companies in the state of Kuwait. Modern Applied Science, 15(1), 143-151.
  7. Alrashidi, M., Almutairi, A., & Zraqat, O. (2022). The impact of big data analytics on audit procedures: Evidence from the Middle East. The Journal of Asian Finance, Economics and Business, 9(2), 93-102.
  8. Alyass, A., Turcotte, M., & Meyre, D. (2015). From big data analysis to personalized medicine for all: challenges and opportunities. BMC medical genomics, 8(1), 1-12.
  9. Amalina, F., Hashem, I. A. T., Azizul, Z. H., Fong, A. T., Firdaus, A., Imran, M., & Anuar, N. B. (2019). Blending big data analytics: Review on challenges and a recent study. IEEE Access, 8, 3629-3645.
  10. Ashrafi, A., Ravasan, A. Z., Trkman, P., & Afshari, S. (2019). The role of business analytics capabilities in bolstering firms’ agility and performance. International Journal of Information Management, 47, 1-15.
  11. Austin, A. A., Carpenter, T. D., Christ, M. H., & Nielson, C. S. (2021). The data analytics journey: Interactions among auditors, managers, regulation, and technology. Contemporary Accounting Research, 38(3), 1888-1924.
  12. Autio, E., Nambisan, S., Thomas, L. D., & Wright, M. (2018). Digital affordances, spatial affordances, and the genesis of entrepreneurial ecosystems. Strategic Entrepreneurship Journal, 12(1), 72-95.
  13. Babbie, E. (2007). The Practice of Social Research (10th Ed. ed.). Ohio: Wadsworth A Division of Thomson Learning, Inc.
  14. Barney, J. (1991). Firm Resources and Sustained Competitive Advantage. Journal of management, 17(1), 99-120. doi:10.1177/014920639101700108
  15. Benitez, J., Castillo, A., Llorens, J., & Braojos, J. (2018). IT-enabled knowledge ambidexterity and innovation performance in small US firms: The moderator role of social media capability. Information & Management, 55(1), 131-143.
  16. Bertello, A., Ferraris, A., Bresciani, S., & De Bernardi, P. (2021). Big data analytics (BDA) and degree of internationalization: the interplay between governance of BDA infrastructure and BDA capabilities. Journal of Management and Governance, 25, 1035-1055.
  17. Bresciani, S., Ferraris, A., & Del Giudice, M. (2018). The management of organizational ambidexterity through alliances in a new context of analysis: Internet of Things (IoT) smart city projects. Technological Forecasting and Social Change, 136, 331-338.
  18. Brewis, C., Dibb, S., & Meadows, M. (2023). Leveraging Big Data for Strategic Marketing: a dynamic capabilities model for incumbent firms. Technological Forecasting and Social Change, 190, 122402.
  19. Brown, B., Chui, M., & Manyika, J. (2011). Are you ready for the era of ‘big data’. McKinsey Quarterly, 4(1), 24-35.
  20. Brynjolfsson, E., Hitt, L. M., & Kim, H. H. (2011). Strength in numbers: How does data-driven decisionmaking affect firm performance? Available at SSRN 1819486.
  21. Cao, M., Chychyla, R., & Stewart, T. (2015). Big data analytics in financial statement audits. Accounting horizons, 29(2), 423-429.
  22. Cappellesso, G., & Thomé, K. M. (2019). Technological innovation in food supply chains: systematic literature review. British Food Journal, 121(10), 2413-2428.
  23. Chaudhuri, S., Dayal, U., & Narasayya, V. (2011). An overview of business intelligence technology. Communications of the ACM, 54(8), 88-98.
  24. Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS quarterly, 1165-1188.
  25. Cillo, V., Rialti, R., Del Giudice, M., & Usai, A. (2021). Niche tourism destinations’ online reputation management and competitiveness in big data era: Evidence from three Italian cases. Current Issues in Tourism, 24(2), 177-191.
  26. Collis, J., & Hussey, R. (2005). Business Research: A Practical Guide for Undergraduate and Postgraduate Students (2nd ed. ed.). Porto Alegre: Bookman.
  27. Cooper, D. R., & Schindler, P. S. (2003). Business Research Methods (8th Edition ed.). Boston: McGraw-Hill Irwin.
  28. Dam, N. A. K., Le Dinh, T., & Menvielle, W. (2019). A systematic literature review of big data adoption in internationalization. Journal of Marketing Analytics, 7, 182-195.
  29. De Mauro, A., Greco, M., Grimaldi, M., & Ritala, P. (2018). Human resources for Big Data professions: A systematic classification of job roles and required skill sets. Information Processing & Management, 54(5), 807-817.
  30. Dubey, R., Gunasekaran, A., & Childe, S. J. (2018). Big data analytics capability in supply chain agility: The moderating effect of organizational flexibility. Management decision, 57(8), 2092-2112.
  31. Ellars, S. (2013). Beyond Volume, Variety and Velocity is the Issue of Big Data Veracity. Retrieved from
  32. Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897-904.
  33. Ferraris, A., Mazzoleni, A., Devalle, A., & Couturier, J. (2019). Big data analytics capabilities and knowledge management: impact on firm performance. Management decision, 57(8), 1923-1936.
  34. George, G., Osinga, E. C., Lavie, D., & Scott, B. A. (2016). Big data and data science methods for management research (Vol. 59, pp. 1493-1507): Academy of Management Briarcliff Manor, NY.
  35. Gnizy, I. (2019). Big data and its strategic path to value in international firms. International Marketing Review, 36(3), 318-341.
  36. Grover, V., Chiang, R. H., Liang, T.-P., & Zhang, D. (2018). Creating strategic business value from big data analytics: A research framework. Journal of management information systems, 35(2), 388-423.
  37. Gunasekaran, A., Yusuf, Y. Y., Adeleye, E. O., & Papadopoulos, T. (2018). Agile manufacturing practices: the role of big data and business analytics with multiple case studies. International journal of production research, 56(1-2), 385-397.
  38. Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049-1064.
  39. He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464-472.
  40. Hitzler, P., & Janowicz, K. (2013). Linked Data, Big Data, and the 4th Paradigm. Semantic Web, 4(3), 233-235.
  41. Jeble, S., Kumari, S., Venkatesh, V., & Singh, M. (2020). Influence of big data and predictive analytics and social capital on performance of humanitarian supply chain: Developing framework and future research directions. Benchmarking: An International Journal, 27(2), 606-633.
  42. Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal of parallel and distributed computing, 74(7), 2561-2573.
  43. Khan, Z., & Vorley, T. (2017). Big data text analytics: an enabler of knowledge management. Journal of Knowledge Management, 21(1), 18-34.
  44. Kowalczyk, M., & Buxmann, P. (2015). An ambidextrous perspective on business intelligence and analytics support in decision processes: Insights from a multiple case study. Decision support systems, 80, 1-13.
  45. Krishnan, K. (2013). Introduction to big data Data warehousing in the age of big data: A volume in MK series on business intelligence. Waltham: MA: Morgan Kaufmann.
  46. LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2010). Big data, analytics and the path from insights to value. MIT Sloan Management Review.
  47. Li, Y. (2022). Analysis of Data Audit Mode in Big Data Environment. Forest Chemicals Review, 2155-2164.
  48. Lim, C. H., & Teoh, K. B. (2021). Factors influencing the SME business success in Malaysia. Annals of Human Resource Management Research, 1(1), 41-54.
  49. Lu, Y., & Ramamurthy, K. (2011). Understanding the link between information technology capability and organizational agility: An empirical examination. MIS quarterly, 931-954.
  50. Madden, S. (2012). From databases to big data. IEEE Internet Computing, 16(3), 4-6.
  51. Manovich, L. (2011). Trending: The promises and the challenges of big social data. Debates in the digital humanities, 2(1), 460-475.
  52. Maritz, J., Eybers, S., & Hattingh, M. (2020). Implementation Considerations for Big Data Analytics (BDA): A Benefit Dependency Network Approach. Paper presented at the Responsible Design, Implementation and Use of Information and Communication Technology: 19th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society, I3E 2020, Skukuza, South Africa, April 6–8, 2020, Proceedings, Part I 19.
  53. McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D., & Barton, D. (2012). Big data: the management revolution. Harvard Business Review, 90(10), 60-68.
  54. McGuire, T., Manyika, J., Chui, M., Manyika, J., & Chui, M. (2012). Why Big Data is the new competitive advantage. Retrieved from,that%20would%20otherwise%20remain%20hidden.
  55. Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics capabilities and innovation: the mediating role of dynamic capabilities and moderating effect of the environment. British journal of management, 30(2), 272-298.
  56. Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2018). Big data analytics capabilities: a systematic literature review and research agenda. Information systems and e-business management, 16, 547-578.
  57. Napier, L., Libert, B., & De Vries, K. (2020). Changing culture is central to changing business models. MIT Sloan Management Review.
  58. Ngai, E. W., Gunasekaran, A., Wamba, S. F., Akter, S., & Dubey, R. (2017). Big data analytics in electronic markets. Electronic Markets, 27, 243-245.
  59. Orenga-Roglá, S., & Chalmeta, R. (2016). Social customer relationship management: taking advantage of Web 2.0 and Big Data technologies. SpringerPlus, 5(1), 1462.
  60. Pagani, M., & Pardo, C. (2017). The impact of digital technology on relationships in a business network. Industrial Marketing Management, 67, 185-192.
  61. Pauleen, D. J., & Wang, W. Y. (2017). Does big data mean big knowledge? KM perspectives on big data and analytics. Journal of Knowledge Management, 21(1), 1-6.
  62. Polit, D. F., & Hungler, B. P. (1999). Nursing research principles and methods. Phyladelphia: Lippincott Williams and Wilkins.
  63. Popovi?, A., Hackney, R., Tassabehji, R., & Castelli, M. (2018). The impact of big data analytics on firms’ high value business performance. Information Systems Frontiers, 20, 209-222.
  64. Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big data, 1(1), 51-59.
  65. Ransbotham, S., & Kiron, D. (2017). Analytics as a source of business innovation. MIT Sloan Management Review, 58(3).
  66. Ren, S., Zhang, Y., Liu, Y., Sakao, T., Huisingh, D., & Almeida, C. M. (2019). A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions. Journal of cleaner production, 210, 1343-1365.
  67. Rialti, R., Marzi, G., Caputo, A., & Mayah, K. A. (2020). Achieving strategic flexibility in the era of big data: The importance of knowledge management and ambidexterity. Management decision, 58(8), 1585-1600.
  68. Rialti, R., Marzi, G., Silic, M., & Ciappei, C. (2018). Ambidextrous organization and agility in big data era: The role of business process management systems. Business process management journal, 24(5), 1091-1109.
  69. Rogers, E. M. (2003). Diffusion of Innovations (5th edition ed.). New York: Free Press.
  70. Russom, P. (2011). Big data analytics. TDWI best practices report, fourth quarter, 19(4), 1-34.
  71. Santoro, G., Fiano, F., Bertoldi, B., & Ciampi, F. (2019). Big data for business management in the retail industry. Management decision, 57(8), 1980-1992.
  72. Schoenherr, T., & Speier?Pero, C. (2015). Data science, predictive analytics, and big data in supply chain management: Current state and future potential. Journal of business logistics, 36(1), 120-132.
  73. Schroeck, M., Scockley, R., Smart, J., Romero-Morales, D., & Tufano, P. (2012). Analytics: The Real-World Use of Big Data: How Innovative Enterprises Extract Value from Uncertain Data. Business Report. IBM Institute for Business Value.
  74. Schryen, G. (2013). Revisiting IS business value research: what we already know, what we still need to know, and how we can get there. European Journal of Information Systems, 22(2), 139-169.
  75. Seddon, P. B., Constantinidis, D., Tamm, T., & Dod, H. (2017). How does business analytics contribute to business value? Information systems journal, 27(3), 237-269.
  76. Sharma, R., Mithas, S., & Kankanhalli, A. (2014). Transforming decision-making processes: a research agenda for understanding the impact of business analytics on organisations. European Journal of Information Systems, 23(4), 433-441.
  77. Shokouhyar, S., Seddigh, M. R., & Panahifar, F. (2020). Impact of big data analytics capabilities on supply chain sustainability: A case study of Iran. World Journal of Science, Technology and Sustainable Development, 17(1), 33-57.
  78. Slater, S. F., & Narver, J. C. (2000). Intelligence generation and superior customer value. Journal of the Academy of Marketing Science, 28, 120-127.
  79. Soares, S. (2012). Big data governance: An emerging imperative: Mc Press.
  80. Straub, D., Boudreau, M.-C., & Gefen, D. (2004). Validation guidelines for IS positivist research. Communications of the Association for Information systems, 13(1), 24.
  81. Streiner, D. L., & Norman, G. R. (1996). Health Measurement Scales. A Practical Guide to their Development and Use. Oxford: Oxford University Press.
  82. Suoniemi, S., Meyer-Waarden, L., Munzel, A., Zablah, A. R., & Straub, D. (2020). Big data and firm performance: The roles of market-directed capabilities and business strategy. Information & Management, 57(7), 103365.
  83. Tanha, M., Fahim, A. Y., Tasnim, S., Raju, M. A. R., Islam, W., Shawn, F., . . . Islam, M. J. (2022). Different dimensions of conspicuous consumption in the emerging market of Bangladesh. Annals of Management and Organization Research, 4(1), 65-87.
  84. Teece, D. J. (2015). Intangible assets and a theory of heterogeneous firms: Springer.
  85. Teece, D. J. (2018). Business models and dynamic capabilities. Long range planning, 51(1), 40-49.
  86. Turban, E., Sharda, R., Aronson, J. E., & King, D. (2008). Business intelligence: A managerial approach: Pearson Prentice Hall Upper Saddle River, NJ.
  87. Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889-901.
  88. Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big data’can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246.
  89. Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J.-f., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356-365.
  90. Watson, H. J., & Wixom, B. H. (2007). The current state of business intelligence. Computer, 40(9), 96-99.
  91. Wernerfelt, B. (1984). A resource?based view of the firm. Strategic management journal, 5(2), 171-180.
  92. Widjaya, A., & Padmoprayitno, A. I. (2022). The Effect of Promotion Mix, Price, and Service Quality on Study Decisions. Annals of Management and Organization Research, 3(3), 221-230.
  93. Yee, R. W., Yeung, A. C., Cheng, T. E., & Lee, P. K. (2013). Market competitiveness and quality performance in high?contact service industries. Industrial Management & Data Systems, 113(4), 573-588.
  94. Zhang, T., Wang, W. Y. C., & Pauleen, D. J. (2017). Big data investments in knowledge and non-knowledge intensive firms: what the market tells us. Journal of Knowledge Management, 21(3), 623-639.
  95. Zraqat, O. M. (2020). The moderating role of business intelligence in the impact of big data on financial reports quality in Jordanian telecom companies. Modern Applied Science, 14(2), 71-85.