UTLJ

Article Details

Vol. 2 No. 1 (2026): March

A Corpus-Based Semantic Study of Robotics Terms

https://doi.org/10.35912/utlj.v2i1.3977

Abstract

Purpose: This study aims to identify word-formation patterns and the semantic domain distribution of contemporary robotics terminology, and to explain how these two dimensions shape the functional organization of the robotics lexical system.

Research Methodology: This research employs a corpus-based functional-semantic approach to analyze 146 unique terms extracted from peer-reviewed articles published in IEEE Transactions on Robotics, IEEE Robotics and Automation Letters, and Frontiers in Robotics and AI. The data were examined based on word-formation strategies and semantic domain classification.

Results: The findings indicate that compounding is the most dominant word-formation strategy (74.0%), followed by acronymy, prefixation, borrowing, suffixation, and blending. Semantically, the terms are distributed across 14 functional domains, with the five largest clusters comprising Systems, Artificial Intelligence, Manipulation, Locomotion, and Navigation.

Conclusions: Contemporary robotics terminology demonstrates a systematic lexical structure characterized by the dominance of compounding and function-based semantic clustering. This reflects the need for conceptual precision and communicative efficiency in scientific robotics discourse.

Limitations: The study is limited to three international journals and a relatively small dataset (146 terms), which may not fully represent the global diversity of robotics terminology.

Contributions: This study contributes theoretically to applied linguistics and technical terminology studies, and practically to technical communication, translation, and the standardization of robotics terminology.

Keywords

Acronymy Compounding Functional Semantics Robotics Terminology Word-Formation

How to Cite

Qizi, R. G. X. ., & O’g’li, N. B. A. . (2026). A Corpus-Based Semantic Study of Robotics Terms. Universal Teaching and Learning Journal, 2(1), 23–33. https://doi.org/10.35912/utlj.v2i1.3977

References

  1. Abusaada, H., & Elshater, A. (2024). Stimulating architects’ mental imagery reaching innovation: Lessons from urban history in using analogies and metaphors. Ain Shams Engineering Journal, 15(9), 102933. doi:https://doi.org/10.1016/j.asej.2024.102933
  2. Aguado, E., Gomez, V., Hernando, M., Rossi, C., & Sanz, R. (2024). A survey of ontology-enabled processes for dependable robot autonomy. Frontiers in Robotics and AI, 11, 1377897. doi:https://doi.org/10.3389/frobt.2024.1377897
  3. Budiono, A., Husen, A., & Suparno, S. (2025). Performance Variable: Influenced by Training, Organizational Culture, and Motivation. Studi Akuntansi, Keuangan, dan Manajemen, 5(1), 51-60. doi:https://doi.org/10.35912/sakman.v5i1.3967
  4. Cabré, M. T. (1999). Terminology: Theory, methods, and applications (Vol. 1): John Benjamins Publishing.
  5. Coeckelbergh, M. (2011). Humans, animals, and robots: A phenomenological approach to human-robot relations. International Journal of Social Robotics, 3(2), 197-204. doi:https://doi.org/10.1007/s12369-010-0075-6
  6. Costa-Carreras, J. (2020). Are terminology planning evaluation and language policy and planning evaluation applicable to the evaluation of standardisation? Current issues in language planning, 21(1), 1-21. doi:https://doi.org/10.1080/14664208.2018.1553913
  7. Faber, P., & Cabezas-García, M. (2019). Specialized Knowledge Representation: from Terms to Frames. Research in Language, 17(2), 197-211. doi:https://doi.org/10.18778/1731-7533.17.2.06
  8. Fadhil, M., & Hati, S. R. H. (2025). Multigroup Analysis of E-Service Quality, Satisfaction, and Loyalty in E-Grocery Services. Jurnal Akuntansi, Keuangan, dan Manajemen, 6(3), 797-814. doi:https://doi.org/10.35912/jakman.v6i3.4456
  9. Febrian, W. D. (2025). Determination green human resource management: Analysis green training, green behavior, green leadership, and green organizational culture (study literature review). Annals of Human Resource Management Research, 5(3), 727-739. doi:https://doi.org/10.35912/ahrmr.v5i3.3144
  10. Gilmore, A., & Millar, N. (2018). The language of civil engineering research articles: A corpus-based approach. English for Specific Purposes, 51, 1-17. doi:https://doi.org/10.1016/j.esp.2018.02.002
  11. Gizi, R. G. X. (2025). Translational Challenges Of Robotics Terminology In English And Uzbek Languages. Review of Multidisciplinary Academic and Practice Studies, 2(2), 131-142. doi:https://doi.org/10.61401/rmaps.v2i2.255
  12. Gunasinghe, A., Hamid, J. A., Khatibi, A., & Azam, S. F. (2020). The adequacy of UTAUT-3 in interpreting academician’s adoption to e-Learning in higher education environments. Interactive Technology and Smart Education, 17(1), 86-106. doi:https://doi.org/10.1108/ITSE-05-2019-0020
  13. Henda, M. B., & Hudrisier, H. (2024). Normalisation de terminologies multilingues pour les TICE: techniques et enjeux. arXiv preprint arXiv:2404.13977, 1, 27-35. doi:https://doi.org/10.48550/arXiv.2404.13977
  14. Humbert-Droz, J., Picton, A., & Condamines, A. (2019). How to build a corpus for a tool-based approach to determinologisation in the field of particle physics. Research in Corpus Linguistics, 7, 1-17. doi:https://doi.org/10.32714/ricl.07.01
  15. Katiyar, S., & Katiyar, K. (2021). Recent trends towards cognitive science: from robots to humanoids Cognitive computing for human-robot interaction (pp. 19-49): Elsevier.
  16. K?l?ç, C., & Atilla, G. (2024). Industry 4.0 and sustainable business models: An intercontinental sample. Business Strategy and the Environment, 33(4), 3142-3166. doi:https://doi.org/10.1002/bse.3634
  17. Kotha, S. S., Akter, N., Abhi, S. H., Das, S. K., Islam, M. R., Ali, M. F., . . . Badal, M. F. R. (2024). Next generation legged robot locomotion: A review on control techniques. Heliyon, 10(18). doi:https://doi.org/10.1016/j.heliyon.2024.e37237
  18. Longhini, A., Welle, M. C., Erickson, Z., & Kragic, D. (2024). Adafold: Adapting folding trajectories of cloths via feedback-loop manipulation. IEEE Robotics and Automation Letters, 9(11), 9183-9190. doi:https://doi.org/10.1109/LRA.2024.3436329
  19. Mamarasulova, I. (2024). Basic Principles of Terminology and Their Importance in Scientific Research. Mental Enlightenment Scientific-Methodological Journal, 5(08), 241-247. doi:https://doi.org/10.37547/mesmj-V5-I8-31
  20. Mazzei, D., Chiarello, F., & Fantoni, G. (2021). Analyzing social robotics research with natural language processing techniques. Cognitive Computation, 13(2), 308-321. doi:
  21. https://doi.org/10.1007/s12559-020-09799-1
  22. Michalec, O., O’Donovan, C., & Sobhani, M. (2021). What is robotics made of? The interdisciplinary politics of robotics research. Humanities and Social Sciences Communications, 8(1). doi:https://doi.org/10.1057/s41599-021-00737-6
  23. Molenaar, S., van den Berg, N., Dalpiaz, F., & Brinkkemper, S. (2025). Concept definition review: A method for studying terminology in software engineering. Information and Software Technology, 180, 107648. doi:https://doi.org/10.1016/j.infsof.2024.107648
  24. Montero-Martínez, S. (2023). Training corporate and institutional terminologists: a case study at the University of Granada. The Interpreter and Translator Trainer, 17(3), 412-433. doi:https://doi.org/10.1080/1750399X.2023.2237326
  25. Mulyantini, S., Surbakti, L. P., Maulana, A., & Wibawaningsih, E. J. (2025). Authentic Culinary Business for Sustainable Tourism: Strategy, Experience, Motivation and Value. Studi Akuntansi, Keuangan, dan Manajemen, 5(1), 143-159. doi:https://doi.org/10.35912/sakman.v5i1.4279
  26. Nhongo, R. (2024). Terminology development through translanguaging as an intellectualisation strategy for African languages in andragogic contexts. JOLLT Journal of Languages and Language Teaching, 12(3), 1284-1297. doi:https://doi.org/10.33394/jollt.v12i3.10040
  27. Ryalat, M., Almtireen, N., Al-refai, G., Elmoaqet, H., & Rawashdeh, N. (2025). Research and education in robotics: A comprehensive review, trends, challenges, and future directions. Journal of Sensor and Actuator Networks, 14(4), 76. doi:https://doi.org/10.3390/jsan14040076
  28. Schneider, S., Hochgeschwender, N., & Bruyninckx, H. (2025). Semantic composition of robotic solver algorithms on graph structures. Frontiers in Robotics and AI, 11, 1363150. doi:https://doi.org/10.3389/frobt.2024.1363150
  29. Siciliano, B., & Khatib, O. (2016). Robotics and the handbook Springer Handbook of Robotics (pp. 1-6): Springer.
  30. Sri kuning, D. (2021). Culture Shock: Online Learning in the Covid-19 Pandemic Phase. Jurnal Humaniora dan Ilmu Pendidikan, 1(1), 55-62. doi:https://doi.org/10.35912/jahidik.v1i1.357
  31. Sulaiman, E., Fitralisma, G., Fata, M. A., & Nawawi, R. (2024). Empowering local communities engagement: Rural tourism and business innovation for SDGs desa. Journal of Sustainable Tourism and Entrepreneurship, 5(1), 31-44. doi:https://doi.org/10.35912/joste.v5i1.1968
  32. Taniguchi, T., Nagai, T., Nakamura, T., Iwahashi, N., Ogata, T., & Asoh, H. (2016). Symbol emergence in robotics: a survey. Advanced Robotics, 30(11-12), 706-728. doi:https://doi.org/10.1080/01691864.2016.1164622
  33. ten Hacken, P. (2018). Terms between standardization and the mental lexicon. Roczniki Humanistyczne, 66(11), 59-77. doi:https://doi.org/10.18290/rh.2018.66.11-4
  34. Trojar, M. (2025). Wüster’s ideas on language, linguistics and terminology Terminology throughout History: A discipline in the making (pp. 167-189): John Benjamins Publishing Company.
  35. Zager, M., Sieber, C., & Fay, A. (2024). Towards semantic interoperability: An information model for autonomous mobile robots. Journal of Intelligent & Robotic Systems, 110(3), 123. doi:https://doi.org/10.1007/s10846-024-02159-3
Contact Us
WhatsApp Instagram Facebook LinkedIn Email